skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying Inclination Shallowing and Representing Flattening Uncertainty in Sedimentary Paleomagnetic Poles
Abstract Inclination is the angle of a magnetization vector from horizontal. Clastic sedimentary rocks often experience inclination shallowing whereby syn‐ to post‐depositional processes result in flattened detrital remanent magnetizations relative to local geomagnetic field inclinations. The deviation of recorded inclinations from true values presents challenges for reconstructing paleolatitudes. A widespread approach for estimating flattening factors (f) compares the shape of an assemblage of magnetization vectors to that derived from a paleosecular variation model (the elongation/inclination [E/I] method). Few studies exist that compare the results of this statistical approach with empirically determined flattening factors and none in the Proterozoic Eon. In this study, we evaluate inclination shallowing within 1.1 billion‐year‐old, hematite‐bearing red beds of the Cut Face Creek Sandstone that is bounded by lava flows of known inclination. Taking this inclination from the volcanics as the expected direction, we found that detrital hematite remanence is flattened withwhereas the pigmentary hematite magnetization shares a common mean with the volcanics. Using the pigmentary hematite direction as the expected inclination results in. These flattening factors are consistent with those estimated through the E/I methodsupporting its application in deep time. However, all methods have significant uncertainty associated with determining the flattening factor. This uncertainty can be incorporated into paleomagnetic poles with the resulting ellipse approximated with a Kent distribution. Rather than seeking to find “the flattening factor,” or assuming a single value, the inherent uncertainty in flattening factors should be recognized and incorporated into paleomagnetic syntheses.  more » « less
Award ID(s):
1847277
PAR ID:
10382374
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
23
Issue:
11
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract New geochronologic and paleomagnetic data from the North American Midcontinent Rift (MCR) reveal the synchronous emplacement of the Beaver River diabase, the anorthosite xenoliths within it, and the Greenstone Flow—one of the largest lava flows on Earth. A U‐Pb zircon date of 1091.83  0.21 Ma (2) from one of the anorthosite xenoliths is consistent with the anorthosite cumulate forming as part of the MCR and provides a maximum age constraint for the Beaver River diabase. Paired with the minimum age constraint of a cross‐cutting Silver Bay intrusion (1091.61  0.14 Ma; 2), these data tightly bracket the age of the Beaver River diabase to be 1091.7  0.2 Ma (95% CI), coeval with the eruption of the Greenstone Flow (1091.59  0.27 Ma; 2)—which is further supported by indistinguishable tilt‐corrected paleomagnetic pole positions. Geochronological, paleomagnetic, mineralogical and geochemical data are consistent with a hypothesis that the Beaver River diabase was the feeder system for the Greenstone Flow. The large areal extent of the intrusives and large estimated volume of the volcanics suggest that they represent a rapid and voluminous ca. 1,092 Ma magmatic pulse near the end of the main stage of MCR magmatism. 
    more » « less
  2. Abstract In this paper, we are interested in the following question: given an arbitrary Steiner triple systemonvertices and any 3‐uniform hypertreeonvertices, is it necessary thatcontainsas a subgraph provided? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive. 
    more » « less
  3. Abstract The apparent end of the internally generated Martian magnetic field at 3.6–4.1 Ga is a key event in Martian history and has been linked to insufficient core cooling. We investigate the thermal and magnetic evolution of the Martian core and mantle using parameterized models and considered three improvements on previous studies. First, our models account for thermal stratification in the core. Second, the models are constrained by estimates for the present‐day areotherm. Third, we consider core thermal conductivity,, values in the range 5–40 Was suggested by recent experiments on iron alloys at Mars core conditions. The majority of our models indicate that the core of Mars is fully conductive at present with core temperatures greater than 1940 K. All of our models are consistent with the range ofW. Models with an activation volume of 6 (0)require a mantle reference viscosity of Pa s. 
    more » « less
  4. Abstract As the abyssal oceans warm, stratification is also expected to change in response. This change may impact mixing and vertical transport by altering the buoyancy flux, internal wave generation, and turbulent dissipation. In this study, repeated surveys of three hydrographic sections in the Southwest Pacific Basin between the 1990s and 2010s are used to estimate the change in buoyancy frequency. We find that below the°C isotherm,is on average reduced by a scaling factor of, a 12% reduction, per decade that intensifies with depth. At°C, we observe the biggest change:, or a 29% reduction per decade. Within the same period, the magnitude of vertical diffusive heat flux is also reduced by about, although this estimate is sensitive to the choice of estimated diffusivity. Finally, implications of these results for the heat budget and global ocean circulation are qualitatively discussed. 
    more » « less
  5. Abstract The Whitham equation was proposed as a model for surface water waves that combines the quadratic flux nonlinearityof the Korteweg–de Vries equation and the full linear dispersion relationof unidirectional gravity water waves in suitably scaled variables. This paper proposes and analyzes a generalization of Whitham's model to unidirectional nonlinear wave equations consisting of a general nonlinear flux functionand a general linear dispersion relation. Assuming the existence of periodic traveling wave solutions to this generalized Whitham equation, their slow modulations are studied in the context of Whitham modulation theory. A multiple scales calculation yields the modulation equations, a system of three conservation laws that describe the slow evolution of the periodic traveling wave's wavenumber, amplitude, and mean. In the weakly nonlinear limit, explicit, simple criteria in terms of generalandestablishing the strict hyperbolicity and genuine nonlinearity of the modulation equations are determined. This result is interpreted as a generalized Lighthill–Whitham criterion for modulational instability. 
    more » « less