skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stacking‐Fault Enhanced Oxygen Redox in Li 2 MnO 3
Abstract Lattice oxygen redox yields anomalous capacity and can significantly increase the energy density of layered Li‐rich transition metal oxide cathodes, garnering tremendous interest. However, the mechanism behind O redox in these cathode materials is still under debate, in part due to the challenges in directly observing O and following associated changes upon electrochemical cycling. Here, with17O NMR as a direct probe of O activities, it is demonstrated that stacking faults enhance O redox participation compared with Li2MnO3domains without stacking faults. This work is concluded by combining both ex situ and in situ17O NMR to investigate the evolution of O at 4i, 8j sites from monoclinicC2/mand 6c(1), 6c(2), 6c(3) sites from the stacking faults (P3112). These measurements are further corroborated and explained by first‐principles calculations finding a stabilization effect of stacking faults in delithiated Li2MnO3. In situ17O NMR tracks O activities with temporal resolution and provides a quantitative determination of reversible O redox versus irreversible processes that form short covalent OO bonds. This work provides valuable insights into the O redox reactions in Li‐excess layered cathodes, which may inspire new material design for cathodes with high specific capacity.  more » « less
Award ID(s):
1847038
PAR ID:
10367025
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
12
Issue:
18
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Li2MnO3has been contemplated as a high‐capacity cathode candidate for Li‐ion batteries; however, it evolves oxygen during battery charging under ambient conditions, which hinders a reversible reaction. However, it is unclear if this irreversible process still holds under subambient conditions. Here, the low‐temperature electrochemical properties of Li2MnO3in an aqueous LiCl electrolyte are evaluated and a reversible discharge capacity of 302 mAh g−1at a potential of 1.0 V versus Ag/AgCl at −78 °C with good rate capability and stable cycling performance, in sharp contrast to the findings in a typical Li2MnO3cell cycled at room temperature, is observed. However, the results reveal that the capacity does not originate from the reversible oxygen oxidation in Li2MnO3but the reversible Cl2(l)/Cl(aq.) redox from the electrolyte. The results demonstrate the good catalytic properties of Li2MnO3to promote the Cl2/Clredox at low temperatures. 
    more » « less
  2. Abstract Iron ion batteries using Fe2+as a charge carrier have yet to be widely explored, and they lack high‐performing Fe2+hosting cathode materials to couple with the iron metal anode. Here, it is demonstrated that VOPO4∙2H2O can reversibly host Fe2+with a high specific capacity of 100 mAh g−1and stable cycling performance, where 68% of the initial capacity is retained over 800 cycles. In sharp contrast, VOPO4∙2H2O's capacity of hosting Zn2+fades precipitously over tens of cycles. VOPO4∙2H2O stores Fe2+with a unique mechanism, where upon contacting the electrolyte by the VOPO4∙2H2O electrode, Fe2+ions from the electrolyte get oxidized to Fe3+ions that are inserted and trapped in the VOPO4∙2H2O structure in an electroless redox reaction. The trapped Fe3+ions, thus, bolt the layered structure of VOPO4∙2H2O, which prevents it from dissolution into the electrolyte during (de)insertion of Fe2+. The findings offer a new strategy to use a redox‐active ion charge carrier to stabilize the layered electrode materials. 
    more » « less
  3. Abstract A low‐carbon future demands more affordable batteries utilizing abundant elements with sustainable end‐of‐life battery management. Despite the economic and environmental advantages of Li‐MnO2batteries, their application so far has been largely constrained to primary batteries. Here, we demonstrate that one of the major limiting factors preventing the stable cycling of Li‐MnO2batteries, Mn dissolution, can be effectively mitigated by employing a common ether electrolyte, 1 mol/L lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1,3‐dioxane (DOL)/1,2‐dimethoxyethane (DME). We discover that the suppression of this dissolution enables highly reversible cycling of the MnO2cathode regardless of the synthesized phase and morphology. Moreover, we find that both the LiPF6salt and carbonate solvents present in conventional electrolytes are responsible for previous cycling challenges. The ether electrolyte, paired with MnO2cathodes is able to demonstrate stable cycling performance at various rates, even at elevated temperature such as 60°C. Our discovery not only represents a defining step in Li‐MnO2batteries with extended life but provides design criteria of electrolytes for vast manganese‐based cathodes in rechargeable batteries. 
    more » « less
  4. Abstract A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–x–yO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites. 
    more » « less
  5. Abstract Rechargeable aqueous Zn−MnO2batteries are promising for stationary energy storage because of their high energy density, safety, environmental benignity, and low cost. Conventional gravel MnO2cathodes have low electrical conductivity, slow ion (de‐)insertion, and poor cycle stability, resulting in poor recharging performance and severe capacity fading. To improve the rechargeability of MnO2, strategies have been devised such as depositing micrometer‐thick MnO2on carbon cloth and blending nanostructured MnO2with additives and binders. The low electrical conductivity of binders and sluggish ion (de‐)insertion in micrometer‐thick MnO2, however, still limit the fast‐charging performance. Herein, we have prepared porous carbon fiber (PCF) supported MnO2cathodes (PCF@MnO2), comprised of nanometer‐thick MnO2uniformly deposited on electrospun block copolymer‐derived PCF that have abundant uniform mesopores. The high electrical conductivity of PCF, fast electrochemical reactions in nanometer‐thick MnO2,and fast ion transport through porous nonwoven fibers contribute to a high rate capability at high loadings. PCF@MnO2, at a MnO2loading of 59.1 wt %, achieves a MnO2‐based specific capacity of 326 and 184 mAh g−1at a current density of 0.1 and 1.0 A g−1, respectively. Our approach of block copolymer‐based PCF as a support for zinc‐ion cathode inspires future designs of fast‐charging electrodes with other active materials. 
    more » « less