skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: A Comparative Study of Ionospheric Day‐To‐Day Variability Over Wuhan Based on Ionosonde Measurements and Model Simulations
Abstract Ionospheric day‐to‐day variability is essential for understanding the space environment, while it is still challenging to properly quantify and forecast. In the present work, the day‐to‐day variability of F2 layer peak electron densities (NmF2) is examined from both observational and modeling perspectives. Ionosonde data over Wuhan station (30.5°N, 114.5°E; 19.3°N magnetic latitude) are compared with simulations from the specific dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD‐WACCM‐X) and the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM) in 2009 and 2012. Both SD‐WACCM‐X and TIEGCM are driven by the realistic 3 h geomagnetic index and daily solar input, and the former includes self‐consistently solved physics and chemistry in the lower atmosphere. The correlation coefficient between observations and SD‐WACCM‐X simulations is much larger than that of the TIEGCM simulations, especially during dusk in 2009 and nighttime in 2012. Both the observed and SD‐WACCM‐X simulated day‐to‐day variability of NmF2 reveal a similar day‐night dependence in 2012 that increases large during the nighttime and decreases during the daytime, and shows favorable consistency of daytime variability in 2009. Both the observations and SD‐WACCM‐X simulations also display semiannual variations in nighttime NmF2 variability, although the month with maximum variability is slightly different. However, TIEGCM does not reproduce the day‐night dependence or the semiannual variations well. The results emphasize the necessity for realistic lower atmospheric perturbations to characterize ionospheric day‐to‐day variability. This work also provides a validation of the SD‐WACCM‐X in terms of ionospheric day‐to‐day variability.  more » « less
Award ID(s):
1753214
PAR ID:
10367029
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
126
Issue:
3
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study explores the meteorological source and vertical propagation of gravity waves (GWs) that drive daytime traveling ionospheric disturbances (TIDs), using the specified dynamics version of the SD-WACCM-X (Whole Atmosphere Community Climate Model with thermosphere-ionosphere eXtension) and the SAMI3 (Sami3 is Also a Model of the Ionosphere) simulations driven by SD-WACCM-X neutral wind and composition. A cold weather front moved over the northern-central USA (90–100°W, 35–45°N) during the daytime of 20 October 2020, with strong upward airflow. GWs with ~500–700 km horizontal wavelengths propagated southward and northward in the thermosphere over the north-central USA. Also, the perturbations were coherent from the surface to the thermosphere; therefore, the GWs were likely generated by vertical acceleration associated with the cold front over Minnesota and South Dakota. The convectively generated GWs had almost infinite vertical wavelength below ~100 km due to being evanescent. This implies that the GWs tunneled through their evanescent region in the middle atmosphere (where a squared vertical wavenumber is equal to or smaller than 0) and became freely propagating in the thermosphere and ionosphere. Medium-scale TIDs (MSTIDs) also propagated southward with the GWs, suggesting that the convectively generated GWs created MSTIDs. 
    more » « less
  2. Abstract Ionospheric day‐to‐day variability is ubiquitous, even under undisturbed geomagnetic and solar conditions. In this paper, quiet‐time day‐to‐day variability of equatorial vertical E × B drift is investigated using observations from ROCSAT‐1 satellite and the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (WACCM‐X) v2.1 simulations. Both observations and model simulations illustrate that the day‐to‐day variability reaches the maximum at dawn, and the variability of dawn drift is largest around June solstice at ~90–180°W. However, there are significant challenges to reproduce the observed magnitude of the variability and the longitude distributions at other seasons. Using a standalone electro‐dynamo model, we find that the day‐to‐day variability of neutral winds in the E‐region (≤~130 km) is the primary driver of the day‐to‐day variability of dawn drift. Ionospheric conductivity modulates the drift variability responses to the E‐region wind variability, thereby determining its strength as well as its seasonal and longitudinal variations. Further, the day‐to‐day variability of dawn drift induced by individual tidal components of winds in June are examined: DW1, SW2, D0, and SW1 are the most important contributors. 
    more » « less
  3. Abstract The upper boundary height of the traditional community general circulation model of the ionosphere‐thermosphere system is too low to be applied to the topside ionosphere/thermosphere study. In this study, the National Center for Atmospheric Research Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (NCAR‐TIEGCM) was successfully extended upward by four scale heights from 400–600 km to 700–1,200 km depending on solar activity, named TIEGCM‐X. The topside ionosphere and thermosphere simulated by TIEGCM‐X agree well with the observations derived from a topside sounder and satellite drag data. In addition, the neutral density, temperature, and electron density simulated by TIEGCM‐X are morphologically consistent with the NCAR‐TIEGCM simulations before extension. The latitude‐altitude distribution of the equatorial ionization anomaly derived from TIEGCM‐X is more reasonable. During geomagnetic storm events, the thermospheric responses of TIEGCM‐X are similar to NCAR‐TIEGCM. However, the ionospheric storm effects in TIEGCM‐X are stronger than those in NCAR‐TIEGCM and are even opposites at some middle and low latitudes due to the presence of more closed magnetic field lines. Defense Meteorological Satellite Program observations prove that the ionospheric storm effect of TIEGCM‐X is more reasonable. The well‐validated TIEGCM‐X has significant potential applications in ionospheric/thermospheric studies, such as the responses to storms, low‐latitude dynamics, and data assimilation. 
    more » « less
  4. Abstract The migrating diurnal tide (DW1) is one of the dominant wave motions in the mesosphere and lower thermosphere. It plays a crucial role in neutral atmosphere and ionosphere coupling. The DW1 can vary over a range of time scales from days to years. While the long‐term variability of the DW1 is mainly attributed to the source and background atmosphere variability, the driving mechanism of short‐term DW1 variability is still openly debated. Herein the daily structure of the DW1 is extracted from observations using a novel multi‐satellite estimation technique and compared with model simulations (NOGAPS‐ALPHA and WACCM‐X). Both the observations and the models show that the day‐to‐day variability of the DW1 is a persistent and ubiquitous feature. The standard deviation peak of DW1 amplitudes, which is used to measure the maximum variability, is generally aligned with the DW1 amplitude peak. This result indicates that the day‐to‐day variability of the DW1 reflects global‐scale changes rather than local excitation of diurnal oscillation. The spatial lag‐correlation analysis of the diurnal (1,1) and (1,2) Hough modes suggests that the day‐to‐day variability of the diurnal (1,1) Hough mode is likely driven by variability in the lower atmosphere and the source of day‐to‐day variability of the (1,2) mode is uncertain. The significant correlation of the DW1 day‐to‐day variability between the NOGAPS‐ALPHA and the multi‐satellite estimation techniques also indicates that the model is capable of reproducing the DW1 structure on a daily basis. 
    more » « less
  5. During geomagnetic storms a large amount of energy is transferred into the ionosphere-thermosphere (IT) system, leading to local and global changes in e.g., the dynamics, composition, and neutral density. The more steady energy from the lower atmosphere into the IT system is in general much smaller than the energy input from the magnetosphere, especially during geomagnetic storms, and therefore details of the lower atmosphere forcing are often neglected in storm time simulations. In this study we compare the neutral density observed by Swarm-C during the moderate geomagnetic storm of 31 January to 3 February 2016 with the Thermosphere-Ionosphere-Electrodynamics-GCM (TIEGCM) finding that the model can capture the observed large scale neutral density variations better in the southern than northern hemisphere. The importance of more realistic lower atmospheric (LB) variations as specified by the Whole Atmosphere Community Climate Model eXtended (WACCM-X) with specified dynamics (SD) is demonstrated by improving especially the northern hemisphere neutral density by up to 15% compared to using climatological LB forcing. Further analysis highlights the importance of the background atmospheric condition in facilitating hemispheric different neutral density changes in response to the LB perturbations. In comparison, employing observationally based field-aligned current (FAC) versus using an empirical model to describe magnetosphere-ionosphere (MI) coupling leads to an 7–20% improved northern hemisphere neutral density. The results highlight the importance of the lower atmospheric variations and high latitude forcing in simulating the absolute large scale neutral density especially the hemispheric differences. However, focusing on the storm time variation with respect to the quiescent time, the lower atmospheric influence is reduced to 1–1.5% improvement with respect to the total observed neutral density. The results provide some guidance on the importance of more realistic upper boundary forcing and lower atmospheric variations when modeling large scale, absolute and relative neutral density variations. 
    more » « less