skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Importance of lower atmospheric forcing and magnetosphere-ionosphere coupling in simulating neutral density during the February 2016 geomagnetic storm
During geomagnetic storms a large amount of energy is transferred into the ionosphere-thermosphere (IT) system, leading to local and global changes in e.g., the dynamics, composition, and neutral density. The more steady energy from the lower atmosphere into the IT system is in general much smaller than the energy input from the magnetosphere, especially during geomagnetic storms, and therefore details of the lower atmosphere forcing are often neglected in storm time simulations. In this study we compare the neutral density observed by Swarm-C during the moderate geomagnetic storm of 31 January to 3 February 2016 with the Thermosphere-Ionosphere-Electrodynamics-GCM (TIEGCM) finding that the model can capture the observed large scale neutral density variations better in the southern than northern hemisphere. The importance of more realistic lower atmospheric (LB) variations as specified by the Whole Atmosphere Community Climate Model eXtended (WACCM-X) with specified dynamics (SD) is demonstrated by improving especially the northern hemisphere neutral density by up to 15% compared to using climatological LB forcing. Further analysis highlights the importance of the background atmospheric condition in facilitating hemispheric different neutral density changes in response to the LB perturbations. In comparison, employing observationally based field-aligned current (FAC) versus using an empirical model to describe magnetosphere-ionosphere (MI) coupling leads to an 7–20% improved northern hemisphere neutral density. The results highlight the importance of the lower atmospheric variations and high latitude forcing in simulating the absolute large scale neutral density especially the hemispheric differences. However, focusing on the storm time variation with respect to the quiescent time, the lower atmospheric influence is reduced to 1–1.5% improvement with respect to the total observed neutral density. The results provide some guidance on the importance of more realistic upper boundary forcing and lower atmospheric variations when modeling large scale, absolute and relative neutral density variations.  more » « less
Award ID(s):
2002574
PAR ID:
10423064
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
9
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The Earth's ionosphere plays a critical role in radio wave transmission, reflection, and scattering, directly affecting communication, navigation, and positioning systems. However, the comprehensive impacts of space weather remain to be fully established in cases where the ionosphere experiences strong disturbances during geomagnetic storms. We reported unprecedented observational evidence of extreme ionospheric electron density depletion and its hemispheric asymmetry during the May 10–12, 2024 super geomagnetic storm, utilizing multi-instrument ground-based and spaceborne in-situ observations. The ionospheric electron density significantly decreased, with a maximum reduction of 98% over the whole northern hemisphere for more than 2 days, causing backscatter echo failures in multiple ionosondes within the Chinese Meridian Project (CMP) monitoring network. In contrast, mid-to-low latitude regions in the southern hemisphere exhibited electron density enhancements. Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) simulations demonstrated strong consistency with northern hemispheric observations. The vertical drift and the column integrated ratio of O and N2 (ΣO/N2) from observations and simulations indicated the deep reduction of total electron content (TEC) mainly generated by severe ion recombination associated with neutral composition changes that interacted with the disturbed electric field. The summer to winter neutral wind and asymmetry of O/N₂ were possibly responsible for the asymmetry in electron density between the northern and southern hemispheres. These results advance understanding of ionospheric storm physics by establishing causal links between magnetosphere-thermosphere coupling processes and extreme electron density variations, while providing critical observational constraints for space weather model refinement. 
    more » « less
  2. Inter-hemispheric asymmetry (IHA) in Earth’s ionosphere–thermosphere (IT) system can be associated with high-latitude forcing that intensifies during storm time, e.g., ion convection, auroral electron precipitation, and energy deposition, but a comprehensive understanding of the pathways that generate IHA in the IT is lacking. Numerical simulations can help address this issue, but accurate specification of high-latitude forcing is needed. In this study, we utilize the Active Magnetosphere and Planetary Electrodynamics Response Experiment-revised fieldaligned currents (FACs) to specify the high-latitude electric potential in the Global Ionosphere and Thermosphere Model (GITM) during the October 8–9, 2012, storm. Our result illustrates the advantages of the FAC-driven technique in capturing high-latitude ion drift, ion convection equatorial boundary, and the storm-time neutral density response observed by satellite. First, it is found that the cross-polar-cap potential, hemispheric power, and ion convection distribution can be highly asymmetric between two hemispheres with a clear Bydependence in the convection equatorial boundary. Comparison with simulation based on mirror precipitation suggests that the convection distribution is more sensitive to FAC, while its intensity also depends on the ionospheric conductance-related precipitation. Second, the IHA in the neutral density response closely follows the IHA in the total Joule heating dissipation with a time delay. Stronger Joule heating deposited associated with greater high-latitude electric potential in the southern hemisphere during the focus period generates more neutral density as well, which provides some evidences that the high-latitude forcing could become the dominant factor to IHAs in the thermosphere when near the equinox. Our study improves the understanding of storm-time IHA in high-latitude forcing and the IT system. 
    more » « less
  3. Abstract In this study, the Global Ionosphere Thermosphere Model is utilized to investigate the inter‐hemispheric asymmetry in the ionosphere‐thermosphere (I‐T) system at mid‐ and high‐latitudes (|geographic latitude| > 45°) associated with inter‐hemispheric differences in (a) the solar irradiance, (b) geomagnetic field, and (c) magnetospheric forcing under moderate geomagnetic conditions. Specifically, we have quantified the relative significance of the above three causes to the inter‐hemispheric asymmetries in the spatially weighted averaged E‐region electron density, F‐region neutral mass density, and horizontal neutral wind along with the hemispheric‐integrated Joule heating. Further, an asymmetry index defined as the percentage differences of these four quantities between the northern and southern hemispheres (|geographic latitude| > 45°) was calculated. It is found that: (a) The difference of the solar extreme ulutraviolet (EUV) irradiance plays a dominant role in causing inter‐hemispheric asymmetries in the four examined I‐T quantities. Typically, the asymmetry index for the E‐region electron density and integrated Joule heating at solstices with F10.7 = 150 sfu can reach 92.97% and 38.25%, respectively. (b) The asymmetric geomagnetic field can result in a strong daily variation of inter‐hemispheric asymmetries in the F‐region neutral wind and hemispheric‐integrated Joule heating over geographic coordinates. Their amplitude of asymmetry indices can be as large as 20.81% and 42.52%, which can be comparable to the solar EUV irradiance effect. (c) The contributions of the asymmetric magnetospheric forcing, including particle precipitation and ion convection pattern, can cause the asymmetry of integrated Joule heating as significant as 28.43% and 34.72%, respectively, which can be even stronger than other causes when the geomagnetic activity is intense. 
    more » « less
  4. Abstract Sudden changes in energy input from the magnetosphere during geomagnetic storms could drive extreme variability in the ionosphere‐thermosphere system, which in turn affect satellite operations and other modern infrastructure. Joule heating is the main form of magnetospheric energy dissipation in the ionosphere‐thermosphere system, so it is important to know when and where Joule heating will occur. While Joule heating occurs all the time, it can increase rapidly during geomagnetic storms. We investigated the Joule heating profile of the 2013 St Patrick's day storm using the University of Michigan Global Ionosphere‐Thermosphere Model (GITM). Using empirical and data‐assimilated drivers we analyzed when and where intense Joule heating occurred. The timing, location, and sources of interhemispheric asymmetry during this geomagnetic storm are of key interest due to near equinox conditions. Hemispheric comparisons are made between parameters, including solar insolation, total electron content profiles, and Pedersen and Hall conductance profiles, obtained from GITM driven with empirical driven input, versus those driven with data‐assimilated patterns. Further comparisons are made during periods of peak hemispheric Joule heating asymmetry in an effort to investigate their potential sources. Additionally, we compare the consistency of the interhemispheric asymmetry between empirical‐ and data‐assimilated driven simulations to further analyze the role of data‐assimilated drivers on the IT system. 
    more » « less
  5. Abstract On 3 February 2022, at 18:13 UTC, SpaceX launched and a short time later deployed 49 Starlink satellites at an orbit altitude between 210 and 320 km. The satellites were meant to be further raised to 550 km. However, the deployment took place during the main phase of a moderate geomagnetic storm, and another moderate storm occurred on the next day. The resulting increase in atmospheric drag led to 38 out of the 49 satellites reentering the atmosphere in the following days. In this work, we use both observations and simulations to perform a detailed investigation of the thermospheric conditions during this storm. Observations at higher altitudes, by Swarm‐A (∼438 km, 09/21 Local Time [LT]) and the Gravity Recovery and Climate Experiment Follow‐On (∼505 km, 06/18 LT) missions show that during the main phase of the storms the neutral mass density increased by 110% and 120%, respectively. The storm‐time enhancement extended to middle and low latitudes and was stronger in the northern hemisphere. To further investigate the thermospheric variations, we used six empirical and first‐principle numerical models. We found the models captured the upper and lower thermosphere changes, however, their simulated density enhancements differ by up to 70%. Further, the models showed that at the low orbital altitudes of the Starlink satellites (i.e., 200–300 km) the global averaged storm‐time density enhancement reached up to ∼35%–60%. Although such storm effects are far from the largest, they seem to be responsible for the reentry of the 38 satellites. 
    more » « less