Let $\Theta _n = (\theta _1, \dots , \theta _n)$ and $\Xi _n = (\xi _1, \dots , \xi _n)$ be two lists of $n$ variables, and consider the diagonal action of ${{\mathfrak {S}}}_n$ on the exterior algebra $\wedge \{ \Theta _n, \Xi _n \}$ generated by these variables. Jongwon Kim and the 2nd author defined and studied the fermionic diagonal coinvariant ring$FDR_n$ obtained from $\wedge \{ \Theta _n, \Xi _n \}$ by modding out by the ideal generated by the ${{\mathfrak {S}}}_n$invariants with vanishing constant term. On the other hand, the 2nd author described an action of ${{\mathfrak {S}}}_n$ on the vector space with basis given by noncrossing set partitions of $\{1,\dots ,n\}$ using a novel family of skein relations that resolve crossings in set partitions. We give an isomorphism between a natural Catalandimensional submodule of $FDR_n$ and the skein representation. To do this, we show that set partition skein relations arise naturally in the context of exterior algebras. Our approach yields an ${{\mathfrak {S}}}_n$equivariant way to resolve crossings in set partitions. We use fermions to clarify, sharpen, and extend the theory of set partition crossing resolution.
 Award ID(s):
 1953781
 Publication Date:
 NSFPAR ID:
 10251736
 Journal Name:
 International Mathematics Research Notices
 ISSN:
 10737928
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract 
Abstract Using the invariant theory of arc spaces, we find minimal strong generating sets for certain cosets of affine vertex algebras inside free field algebras that are related to classical Howe duality. These results have several applications. First, for any vertex algebra ${{\mathcal {V}}}$, we have a surjective homomorphism of differential algebras $\mathbb {C}[J_{\infty }(X_{{{\mathcal {V}}}})] \rightarrow \text {gr}^{F}({{\mathcal {V}}})$; equivalently, the singular support of ${{\mathcal {V}}}$ is a closed subscheme of the arc space of the associated scheme $X_{{{\mathcal {V}}}}$. We give many new examples of classically free vertex algebras (i.e., this map is an isomorphism), including $L_{k}({{\mathfrak {s}}}{{\mathfrak {p}}}_{2n})$ for all positive integers $n$ and $k$. We also give new examples where the kernel of this map is nontrivial but is finitely generated as a differential ideal. Next, we prove a coset realization of the subregular ${{\mathcal {W}}}$algebra of ${{\mathfrak {s}}}{{\mathfrak {l}}}_{n}$ at a critical level that was previously conjectured by Creutzig, Gao, and the 1st author. Finally, we give some new levelrank dualities involving affine vertex superalgebras.

Abstract We expand upon the notion of equivariant log concavity and make equivariant log concavity conjectures for Orlik–Solomon algebras of matroids, Cordovil algebras of oriented matroids, and Orlik–Terao algebras of hyperplane arrangements. In the case of the Coxeter arrangement for the Lie algebra $\mathfrak{s}\mathfrak{l}_n$, we exploit the theory of representation stability to give computerassisted proofs of these conjectures in low degree.

Abstract Let $$V_*\otimes V\rightarrow {\mathbb {C}}$$ V ∗ ⊗ V → C be a nondegenerate pairing of countabledimensional complex vector spaces V and $$V_*$$ V ∗ . The Mackey Lie algebra $${\mathfrak {g}}=\mathfrak {gl}^M(V,V_*)$$ g = gl M ( V , V ∗ ) corresponding to this pairing consists of all endomorphisms $$\varphi $$ φ of V for which the space $$V_*$$ V ∗ is stable under the dual endomorphism $$\varphi ^*: V^*\rightarrow V^*$$ φ ∗ : V ∗ → V ∗ . We study the tensor Grothendieck category $${\mathbb {T}}$$ T generated by the $${\mathfrak {g}}$$ g modules V , $$V_*$$ V ∗ and their algebraic duals $$V^*$$ V ∗ and $$V^*_*$$ V ∗ ∗ . The category $${{\mathbb {T}}}$$ T is an analogue of categories considered in prior literature, the main difference being that the trivial module $${\mathbb {C}}$$ C is no longer injective in $${\mathbb {T}}$$ T . We describe the injective hull I of $${\mathbb {C}}$$ C in $${\mathbb {T}}$$ T , and show that the category $${\mathbb {T}}$$ T is Koszul. In addition, we prove that I is endowed with a natural structure of commutative algebra. We then define another category $$_I{\mathbb {T}}$$ I Tmore »

The center $Z_n(q)$ of the integral group algebra of the general linear group $GL_n(q)$ over a finite field admits a filtration with respect to the reflection length. We show that the structure constants of the associated graded algebras $\mathscr{G}_n(q)$ are independent of $n$, and this stability leads to a universal stable center with positive integer structure constants which governs the algebras $\mathscr{G}_n(q)$ for all $n$. Various structure constants of the stable center are computed and several conjectures are formulated. Analogous stability properties for symmetric groups and wreath products were established earlier by FarahatHigman and the second author.