skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Building digital twins of the human immune system: toward a roadmap
Abstract Digital twins, customized simulation models pioneered in industry, are beginning to be deployed in medicine and healthcare, with some major successes, for instance in cardiovascular diagnostics and in insulin pump control. Personalized computational models are also assisting in applications ranging from drug development to treatment optimization. More advanced medical digital twins will be essential to making precision medicine a reality. Because the immune system plays an important role in such a wide range of diseases and health conditions, from fighting pathogens to autoimmune disorders, digital twins of the immune system will have an especially high impact. However, their development presents major challenges, stemming from the inherent complexity of the immune system and the difficulty of measuring many aspects of a patient’s immune state in vivo. This perspective outlines a roadmap for meeting these challenges and building a prototype of an immune digital twin. It is structured as a four-stage process that proceeds from a specification of a concrete use case to model constructions, personalization, and continued improvement.  more » « less
Award ID(s):
1720625
PAR ID:
10367196
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Digital Medicine
Volume:
5
Issue:
1
ISSN:
2398-6352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins. The immune response is complex and varies across diseases and patients, and its modelling requires the collective expertise of the clinical, immunology, and computational modelling communities. This review outlines the initial progress on immune digital twins and the various initiatives to facilitate communication between interdisciplinary communities. We also outline the crucial aspects of an immune digital twin design and the prerequisites for its implementation in the clinic. We propose some initial use cases that could serve as “proof of concept” regarding the utility of immune digital technology, focusing on diseases with a very different immune response across spatial and temporal scales (minutes, days, months, years). Lastly, we discuss the use of digital twins in drug discovery and point out emerging challenges that the scientific community needs to collectively overcome to make immune digital twins a reality. 
    more » « less
  2. Bonato, Paolo (Ed.)
    Over the past two decades Biomedical Engineering has emerged as a major discipline that bridges societal needs of human health care with the development of novel technologies. Every medical institution is now equipped at varying degrees of sophistication with the ability to monitor human health in both non-invasive and invasive modes. The multiple scales at which human physiology can be interrogated provide a profound perspective on health and disease. We are at the nexus of creating “avatars” (herein defined as an extension of “digital twins”) of human patho/physiology to serve as paradigms for interrogation and potential intervention. Motivated by the emergence of these new capabilities, the IEEE Engineering in Medicine and Biology Society, the Departments of Biomedical Engineering at Johns Hopkins University and Bioengineering at University of California at San Diego sponsored an interdisciplinary workshop to define the grand challenges that face biomedical engineering and the mechanisms to address these challenges. The Workshop identified five grand challenges with cross-cutting themes and provided a roadmap for new technologies, identified new training needs, and defined the types of interdisciplinary teams needed for addressing these challenges. The themes presented in this paper include: 1) accumedicine through creation of avatars of cells, tissues, organs and whole human; 2) development of smart and responsive devices for human function augmentation; 3) exocortical technologies to understand brain function and treat neuropathologies; 4) the development of approaches to harness the human immune system for health and wellness; and 5) new strategies to engineer genomes and cells. 
    more » « less
  3. Abstract Urban informatics appears to be a suitable area for the application of digital twins. Definitions of the term share some characteristics, but these definitions do not agree on what exactly constitutes a digital twin. The term has the potential to be misleading unless adequate attention is paid to the inherent uncertainty in any replica of a real system. The question of uncertainty is addressed, together with some of the issues that make its quantification problematic. Digital twins for urban informatics pose questions of purpose, governance, and ethics. In the final section the paper suggests some research issues that will need to be addressed if digital twins are to be successful. 
    more » « less
  4. We are rapidly approaching a future in which cancer patient digital twins will reach their potential to predict cancer prevention, diagnosis, and treatment in individual patients. This will be realized based on advances in high performance computing, computational modeling, and an expanding repertoire of observational data across multiple scales and modalities. In 2020, the US National Cancer Institute, and the US Department of Energy, through a trans-disciplinary research community at the intersection of advanced computing and cancer research, initiated team science collaborative projects to explore the development and implementation of predictive Cancer Patient Digital Twins. Several diverse pilot projects were launched to provide key insights into important features of this emerging landscape and to determine the requirements for the development and adoption of cancer patient digital twins. Projects included exploring approaches to using a large cohort of digital twins to perform deep phenotyping and plan treatments at the individual level, prototyping self-learning digital twin platforms, using adaptive digital twin approaches to monitor treatment response and resistance, developing methods to integrate and fuse data and observations across multiple scales, and personalizing treatment based on cancer type. Collectively these efforts have yielded increased insights into the opportunities and challenges facing cancer patient digital twin approaches and helped define a path forward. Given the rapidly growing interest in patient digital twins, this manuscript provides a valuable early progress report of several CPDT pilot projects commenced in common, their overall aims, early progress, lessons learned and future directions that will increasingly involve the broader research community. 
    more » « less
  5. A digital twin (DT) is an interactive, real-time digital representation of a system or a service utilizing onboard sensor data and Internet of Things (IoT) technology to gain a better insight into the physical world. With the increasing complexity of systems and products across many sectors, there is an increasing demand for complex systems optimization. Digital twins vary in complexity and are used for managing the performance, health, and status of a physical system by virtualizing it. The creation of digital twins enabled by Modelbased Systems Engineering (MBSE) has aided in increasing system interconnectivity and simplifying the system optimization process. More specifically, the combination of MBSE languages, tools, and methods has served as a starting point in developing digital twins. This article discusses how MBSE has previously facilitated the development of digital twins across various domains, emphasizing both the benefits and disadvantages of adopting an MBSE enabled digital twin creation. Further, the article expands on how various levels of digital twins were generated via the use of MBSE. An MBSE enabled conceptual framework for developing digital twins is identified that can be used as a research testbed for developing digital twins and optimizing systems and system of systems. Keywords—MBSE, Digital Twin, Digital Shadow, Digital Model, SysML 
    more » « less