skip to main content


This content will become publicly available on January 1, 2025

Title: Grand Challenges at the Interface of Engineering and Medicine
Over the past two decades Biomedical Engineering has emerged as a major discipline that bridges societal needs of human health care with the development of novel technologies. Every medical institution is now equipped at varying degrees of sophistication with the ability to monitor human health in both non-invasive and invasive modes. The multiple scales at which human physiology can be interrogated provide a profound perspective on health and disease. We are at the nexus of creating “avatars” (herein defined as an extension of “digital twins”) of human patho/physiology to serve as paradigms for interrogation and potential intervention. Motivated by the emergence of these new capabilities, the IEEE Engineering in Medicine and Biology Society, the Departments of Biomedical Engineering at Johns Hopkins University and Bioengineering at University of California at San Diego sponsored an interdisciplinary workshop to define the grand challenges that face biomedical engineering and the mechanisms to address these challenges. The Workshop identified five grand challenges with cross-cutting themes and provided a roadmap for new technologies, identified new training needs, and defined the types of interdisciplinary teams needed for addressing these challenges. The themes presented in this paper include: 1) accumedicine through creation of avatars of cells, tissues, organs and whole human; 2) development of smart and responsive devices for human function augmentation; 3) exocortical technologies to understand brain function and treat neuropathologies; 4) the development of approaches to harness the human immune system for health and wellness; and 5) new strategies to engineer genomes and cells.  more » « less
Award ID(s):
2235461
NSF-PAR ID:
10512295
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Editor(s):
Bonato, Paolo
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Open Journal of Engineering in Medicine and Biology
Edition / Version:
1
Volume:
5
ISSN:
2644-1276
Page Range / eLocation ID:
1 to 13
Subject(s) / Keyword(s):
Training Conferences Collaboration Medical services Biomedical engineering Diseases Immune system
Format(s):
Medium: X Size: 1MB Other: PDF
Size(s):
1MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Kirgiz, Mehmet Serkan (Ed.)
    Interdisciplinary research is the synergistic combination of two or more disciplines to achieve one research objective. Current research highlights the importance of interdisciplinary research in science education, particularly between educational experts within a particular science discipline (discipline-based education researchers) and those who study human learning in a more general sense (learning scientists). However, this type of interdisciplinary research is not common and little empirical evidence exists that identifies barriers and possible solutions. We hosted a pre-conference workshop for Discipline-Based Educational Researchers and Learning Scientists designed to support interdisciplinary collaborations. We collected evidence during our workshop regarding barriers to interdisciplinary collaborations in science education, perceptions of perceived cohesion in participants’ home university departments and professional communities, and the impact of our workshop on fostering new connections. Based on participants’ responses, we identified three categories of barriers, Disciplinary Differences , Professional Integration , and Collaborative Practice . Using a post-conference survey, we found an inverse pattern in perceived cohesion to home departments compared to self-identified professional communities. Additionally, we found that after the workshop participants reported increased connections across disciplines. Our results provide empirical evidence regarding challenges to interdisciplinary research in science education and suggest that small professional development workshops have the potential for facilitating durable interdisciplinary networks where participants feel a sense of belonging not always available in their home departments. 
    more » « less
  2. Abstract

    This perspective article highlights the challenges in the theoretical description of photoreceptor proteins using multiscale modeling, as discussed at the CECAM workshop in Tel Aviv, Israel. The participants have identified grand challenges and discussed the development of new tools to address them. Recent progress in understanding representative proteins such as green fluorescent protein, photoactive yellow protein, phytochrome, and rhodopsin is presented, along with methodological developments.

     
    more » « less
  3. Background: There are well-recognized challenges to delivering specialty health care in rural settings. These challenges are particularly evident for specialized surgical health care due to the lack of trained operators in rural communities. Telerobotic surgery could have a significant impact on the rural-urban health care gap, but thus far, the promise of this method of health care delivery has gone unrealized. With the increasing adoption of telehealth over the past year, along with the maturation of telecommunication and robotic technologies over the past 2 decades, a reappraisal of the opportunities and barriers to widespread implementation of telerobotic surgery is warranted. Here we report the outcome of a rural telerobotic stakeholder workshop to explore modern-day issues critical to the advancement of telerobotic surgical health care. Materials and Methods: We assembled a multidisciplinary stakeholder panel to participate in a 2-day Rural Telerobotic Surgery Stakeholder Workshop. Participants had diverse expertise, including specialty surgeons, technology experts, and representatives of the broader telerobotic health care ecosystem, including economists, lawyers, regulatory consultants, public health advocates, rural hospital administrators, nurses, and payers. The research team reviewed transcripts from the workshop with themes identified and research questions generated based on stakeholder comments and feedback. Results: Stakeholder discussions fell into four general themes, including (1) operating room team interactions, (2) education and training, (3) network and security, and (4) economic issues. The research team then identified several research questions within each of these themes and provided specific research strategies to address these questions. Conclusions: There are still important unanswered questions regarding the implementation and adoption of rural telerobotic surgery. Based on stakeholder feedback, we have developed a research agenda along with suggested strategies to address outstanding research questions. The successful execution of these research opportunities will fill critical gaps in our understanding of how to advance the widespread adoption of rural telerobotic health care. 
    more » « less
  4. The knowledge and technologies that move our society forward and preserve our international competitive advantage rely upon a highly skilled workforce that is adept at conducting complex scientific and technical research—and in translating its outcome into useful products and services. “Use-inspired” research is driven by specific needs and interests and naturally focuses on socioeconomically advantageous application, whereas academic research tends to be driven by an intrinsic quest for new knowledge. Each has its role in overall technological development, however, the skills and knowledge crucial for success in these domains can differ significantly. To integrate these two approaches in doctoral training in STEM fields, a national workshop of ~100 leaders of industry, academia, funding agencies and non-profits was held with the goal of developing a robust understanding of the current status of the pipeline from graduate degree programs in STEM into professional research environments. At the conclusion, the Workshop participants identified gaps in the present training of STEM doctorates. Then they endorsed the Pasteur Partners PhD (P3) track recently established at Lehigh University as a new model for student-centered workforce training based on use-inspired research in partnership with industry. Here, we present the key outcomes of the workshop and describe the four distinctive features of the P3 program: 1. Pre-program summer internship; 2. Co-advising of students by a university faculty member and an industry researcher; 3. Instructions for developing essential professional skills; 4. Industry Residency (as in medical school). In this context, ‘Industry’ is defined broadly to include private corporations, national labs, defense organizations, healthcare institutes, etc., which hire PhDs. Collectively, we consider this as a model for the much needed redesigning of the US STEM doctoral education to create a national workforce of technical leaders. Finally, challenges to the implementation of the P3 track are identified. Paper presented at 2023 ASEE Annual Conference & Exposition, Baltimore , Maryland. https://peer.asee.org/44062 
    more » « less
  5. A shift in the traditional technocentric view of medical device design to a human-centered one is needed to bridge existing translational gaps and improve health equity. To ensure the successful and equitable adoption of health technology innovations, engineers must think beyond the device and the direct end user and must seek a more holistic understanding of broader stakeholder needs and the intended context of use early in a design process. The objectives of this review article are ( a) to provide rationale for the need to incorporate meaningful stakeholder analysis and contextual investigation in health technology development and biomedical engineering pedagogy, ( b) to review existing frameworks and human- and equity-centered approaches to stakeholder engagement and contextual investigation for improved adoption of innovative technologies, and ( c) to present case studyexamples of medical device design that apply these approaches to bridge the gaps between biomedical engineers and the contexts for which they are designing.

     
    more » « less