skip to main content


Title: Evolutionary Origins of Binary Neutron Star Mergers: Effects of Common Envelope Efficiency and Metallicity
Abstract

The formation histories of compact binary mergers, especially stellar-mass binary black hole mergers, have recently come under increased scrutiny and revision. We revisit the question of the dominant formation channel and efficiency of forming binary neutron star (BNS) mergers. We use the stellar and binary evolution codeMESAand implement a detailed method for common envelope and mass transfer. We perform simulations for donor masses between 7 Mand 20 Mwith a neutron star (NS) companion of 1.4 Mand 2.0 M at two metallicities, using varying common envelope efficiencies and two different prescriptions to determine if the donor undergoes core collapse or electron capture, given their helium and carbon–oxygen cores. In contrast to the case of binary black hole mergers, for an NS companion of 1.4 M, all BNS mergers are formed following a common envelope phase. For an NS mass of 2.0 M, we identify a small subset of mergers following only stable mass transfer if the NS receives a natal kick sampled from a Maxwellian distribution with velocity dispersionσ= 265 km s−1. Regardless of the supernova prescription, we find more BNS mergers at subsolar metallicity compared to solar.

 
more » « less
Award ID(s):
2207945
PAR ID:
10522314
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
955
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
133
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The recent detections of the ∼10 s longγ-ray bursts (GRBs) 211211A and 230307A followed by softer temporally extended emission (EE) and kilonovae point to a new GRB class. Using state-of-the-art first-principles simulations, we introduce a unifying theoretical framework that connects binary neutron star (BNS) and black hole–NS (BH–NS) merger populations with the fundamental physics governing compact binary GRBs (cbGRBs). For binaries with large total masses,Mtot≳ 2.8M, the compact remnant created by the merger promptly collapses into a BH surrounded by an accretion disk. The duration of the pre-magnetically arrested disk (MAD) phase sets the duration of the roughly constant power cbGRB and could be influenced by the disk mass,Md. We show that massive disks (Md≳ 0.1M), which form for large binary mass ratiosq≳ 1.2 in BNS orq≲ 3 in BH–NS mergers, inevitably produce 211211A-like long cbGRBs. Once the disk becomes MAD, the jet power drops with the mass accretion rate asṀt2, establishing the EE decay. Two scenarios are plausible for short cbGRBs. They can be powered by BHs with less massive disks, which form for otherqvalues. Alternatively, for binaries withMtot≲ 2.8M, mergers should go through a hypermassive NS (HMNS) phase, as inferred for GW170817. Magnetized outflows from such HMNSs, which typically live for ≲1 s, offer an alternative progenitor for short cbGRBs. The first scenario is challenged by the bimodal GRB duration distribution and the fact that the Galactic BNS population peaks at sufficiently low masses that most mergers should go through an HMNS phase.

     
    more » « less
  2. Abstract

    We present the discovery of a new double-detonation progenitor system consisting of a hot subdwarf B (sdB) binary with a white dwarf companion with aPorb= 76.34179(2) minutes orbital period. Spectroscopic observations are consistent with an sdB star during helium core burning residing on the extreme horizontal branch. Chimera light curves are dominated by ellipsoidal deformation of the sdB star and a weak eclipse of the companion white dwarf. Combining spectroscopic and light curve fits, we find a low-mass sdB star,MsdB= 0.383 ± 0.028Mwith a massive white dwarf companion,MWD= 0.725 ± 0.026M. From the eclipses we find a blackbody temperature for the white dwarf of 26,800 K resulting in a cooling age of ≈25 Myr whereas ourMESAmodel predicts an sdB age of ≈170 Myr. We conclude that the sdB formed first through stable mass transfer followed by a common envelope which led to the formation of the white dwarf companion ≈25 Myr ago. Using theMESAstellar evolutionary code we find that the sdB star will start mass transfer in ≈6 Myr and in ≈60 Myr the white dwarf will reach a total mass of 0.92Mwith a thick helium layer of 0.17M. This will lead to a detonation that will likely destroy the white dwarf in a peculiar thermonuclear supernova. PTF1 J2238+7430 is only the second confirmed candidate for a double-detonation thermonuclear supernova. Using both systems we estimate that at least ≈1% of white dwarf thermonuclear supernovae originate from sdB+WD binaries with thick helium layers, consistent with the small number of observed peculiar thermonuclear explosions.

     
    more » « less
  3. Abstract

    We report the observation of a coalescing compact binary with component masses 2.5–4.5Mand 1.2–2.0M(all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5Mat 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of5547+127Gpc3yr1for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap.

     
    more » « less
  4. ABSTRACT Tidal dissipation due to turbulent viscosity in the convective regions of giant stars plays an important role in shaping the orbits of pre-common-envelope systems. Such systems are possible sources of transients and close compact binary systems that will eventually merge and produce detectable gravitational wave signals. Most previous studies of the onset of common envelope episodes have focused on circular orbits and synchronously rotating donor stars under the assumption that tidal dissipation can quickly spin-up the primary and circularize the orbit before the binary reaches Roche lobe overflow (RLO). We test this assumption by coupling numerical models of the post-main-sequence stellar evolution of massive stars with the model for tidal dissipation in convective envelopes developed in Vick & Lai – a tidal model that is accurate even for highly eccentric orbits with small pericentre distances. We find that, in many cases, tidal dissipation does not circularize the orbit before RLO. For a $10\, {\rm M}_{\odot }$ ($15\, {\rm M}_{\odot }$) primary star interacting with a $1.4\, {\rm M}_{\odot }$ companion, systems with pericentre distances within 3 au (6 au) when the primary leaves the main sequence will retain the initial orbital eccentricity when the primary grows to the Roche radius. Even in systems that tidally circularize before RLO, the donor star may be rotating subsynchronously at the onset of mass transfer. Our results demonstrate that some possible precursors to double neutron star systems are likely eccentric at the Roche radius. The effects of pre-common-envelope eccentricity on the resulting compact binary merit further study. 
    more » « less
  5. We study the impact of stellar cooling due to light axion emission on the formation and evolution of black hole binaries, via stable mass transfer and the common envelope scenario.~We find that in the presence of light axion emission, no binary black hole mergers are formed with black holes in the lower mass gap ($M_{\rm BH} < 4 {\rm M}_\odot $) via the common envelope formation channel.~In some systems, this happens because axions prevent Roche lobe overflow.~In others, they prevent the common envelope from being ejected.~Our results apply to axions with couplings $ g_{a \gamma} \gtrsim 10^{-10}\, \rm GeV^{-1}$ (to photons) or $\alpha_{ae} \gtrsim 10^{-26} $ (to electrons) and masses $ m_a \ll 10 \, \rm keV$.~Light, weakly coupled particles may therefore apparently produce a mass gap $2 {\rm M}_\odot < M_{\rm BH} < 4 {\rm M}_\odot$ in the LIGO/Virgo/KAGRA data, when no mass gap is present in the stellar remnant population. 
    more » « less