skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neutral-charged-particle Collisions as the Mechanism for Accretion Disk Angular Momentum Transport
Abstract The matter in an accretion disk must lose angular momentum when moving radially inwards but how this works has long been a mystery. By calculating the trajectories of individual colliding neutrals, ions, and electrons in a weakly ionized 2D plasma containing gravitational and magnetic fields, we numerically simulate accretion disk dynamics at the particle level. As predicted by Lagrangian mechanics, the fundamental conserved global quantity is the total canonical angular momentum, not the ordinary angular momentum. When the Kepler angular velocity and the magnetic field have opposite polarity, collisions between neutrals and charged particles cause: (i) ions to move radially inwards, (ii) electrons to move radially outwards, (iii) neutrals to lose ordinary angular momentum, and (iv) charged particles to gain canonical angular momentum. Neutrals thus spiral inward due to their decrease of ordinary angular momentum while the accumulation of ions at small radius and accumulation of electrons at large radius produces a radially outward electric field. In 3D, this radial electric field would drive an out-of-plane poloidal current that produces the magnetic forces that drive bidirectional astrophysical jets. Because this neutral angular momentum loss depends only on neutrals colliding with charged particles, it should be ubiquitous. Quantitative scaling of the model using plausible disk density, temperature, and magnetic field strength gives an accretion rate of 3 × 10−8solar mass per year, which is in good agreement with observed accretion rates.  more » « less
Award ID(s):
2105492 1914599
PAR ID:
10367271
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
930
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 167
Size(s):
Article No. 167
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The conventional accretion disk lore is that magnetized turbulence is the principal angular momentum transport process that drives accretion. However, when dynamically important large-scale magnetic fields thread an accretion disk, they can produce mass and angular momentum outflows, known as winds,that also drive accretion. Yet, the relative importance of turbulent and wind-driven angular momentum transport is still poorly understood. To probe this question, we analyze a long-duration (1.2 × 105rg/c) simulation of a rapidly rotating (a= 0.9) black hole feeding from a thick (H/r∼ 0.3), adiabatic, magnetically arrested disk (MAD), whose dynamically important magnetic field regulates mass inflow and drives both uncollimated and collimated outflows (i.e., winds and jets, respectively). By carefully disentangling the various angular momentum transport processes within the system, we demonstrate the novel result that disk winds and disk turbulence both extract roughly equal amounts of angular momentum from the disk. We find cumulative angular momentum and mass accretion outflow rates of L ̇ r 0.9 and M ̇ r 0.4 , respectively. This result suggests that understanding both turbulent and laminar stresses is key to understanding the evolution of systems where geometrically thick MADs can occur, such as the hard state of X-ray binaries, low-luminosity active galactic nuclei, some tidal disruption events, and possibly gamma-ray bursts. 
    more » « less
  2. Abstract Collisionless shocks tend to send charged particles into the upstream, driving electric currents through the plasma. Using kinetic particle-in-cell simulations, we investigate how the background thermal plasma neutralizes such currents in the upstream of quasi-parallel non-relativistic electron–proton shocks. We observe distinct processes in different regions: the far upstream, the shock precursor, and the shock foot. In the far upstream, the current is carried by nonthermal protons, which drive electrostatic modes and produce suprathermal electrons that move toward upstream infinity. Closer to the shock (in the precursor), both the current density and the momentum flux of the beam increase, which leads to electromagnetic streaming instabilities that contribute to the thermalization of suprathermal electrons. At the shock foot, these electrons are exposed to shock-reflected protons, resulting in a two-stream type instability. We analyze these processes and the resulting heating through particle tracking and controlled simulations. In particular, we show that the instability at the shock foot can make the effective thermal speed of electrons comparable to the drift speed of the reflected protons. These findings are important for understanding both the magnetic field amplification and the processes that may lead to the injection of suprathermal electrons into diffusive shock acceleration. 
    more » « less
  3. Abstract Spinning supermassive black holes (BHs) in active galactic nuclei magnetically launch relativistic collimated outflows, or jets. Without angular momentum supply, such jets are thought to perish within 3 orders of magnitude in distance from the BH, well before reaching kiloparsec scales. We study the survival of such jets at the largest scale separation to date, via 3D general relativistic magnetohydrodynamic simulations of rapidly spinning BHs immersed into uniform zero-angular-momentum gas threaded by a weak vertical magnetic field. We place the gas outside the BH sphere of influence, or the Bondi radius, chosen to be much larger than the BH gravitational radius,RB= 103Rg. The BH develops dynamically important large-scale magnetic fields, forms a magnetically arrested disk (MAD), and launches relativistic jets that propagate well outsideRBand suppress BH accretion to 1.5% of the Bondi rate, M ̇ B . Thus, low-angular-momentum accretion in the MAD state can form large-scale jets in Fanaroff–Riley (FR) type I and II galaxies. Subsequently, the disk shrinks and exits the MAD state: barely a disk (BAD), it rapidly precesses, whips the jets around, globally destroys them, and lets 5%–10% of M ̇ B reach the BH. Thereafter, the disk starts rocking back and forth by angles 90°–180°: the rocking accretion disk (RAD) launches weak intermittent jets that spread their energy over a large area and suppress BH accretion to ≲2% M ̇ B . Because the BAD and RAD states tangle up the jets and destroy them well insideRB, they are promising candidates for the more abundant, but less luminous, class of FR0 galaxies. 
    more » « less
  4. Protoplanetary disk evolution exhibits trends with stellar mass, but also diversity of structure, and lifetime, with implications for planet formation and demographics. We show how varied outcomes can result from evolving structures in the inner disk that attenuate stellar soft X-rays that otherwise drive photoevaporation in the outer disk. The magnetic truncation of the disk around a rapidly rotating T Tauri star is initially exterior to the corotation radius and “propeller” accretion is accompanied by an inner magnetized wind, shielding the disk from X-rays. Because rotation varies little due to angular momentum exchange with the disk, stellar contraction causes the truncation radius to migrate inside the corotation radius, the inner wind to disappear, and photoevaporation to erode a gap in the disk, accelerating its dissipation. This X-ray attenuation scenario explains the trend of the longer lifetime, reduced structure, and compact size of disks around lower-mass stars. It also explains an observed lower bound and scatter in the distribution of disk accretion rates. Disks that experience early photoevaporation and form gaps can efficiently trap solids at a pressure bump at 1–10 au, triggering giant planet formation, while those with later-forming gaps or indeed no gaps form multiple smaller planets on close-in orbits, a pattern that is consistent with observed exoplanet demographics. 
    more » « less
  5. A time-varying magnetic field generates an electric field in an ionic conductor, causing ions to move and inducing an ionic current. This magnetoionic transduction enables ionotronic transformers for signal transduction between electrons and ions. 
    more » « less