skip to main content


Title: Caribbean king crab larvae and juveniles show tolerance to ocean acidification and ocean warming
Abstract

Coastal habitats are experiencing decreases in seawater pH and increases in temperature due to anthropogenic climate change. The Caribbean king crab,Maguimithrax spinosissimus, plays a vital role on Western Atlantic reefs by grazing macroalgae that competes for space with coral recruits. Therefore, identifying its tolerance to anthropogenic stressors is critically needed if this species is to be considered as a potential restoration management strategy in coral reef environments. We examined the effects of temperature (control: 28 °C and elevated: 31 °C) and pH (control: 8.0 and reduced pH: 7.7) on the king crab’s larval and early juvenile survival, molt-stage duration, and morphology in a fully crossed laboratory experiment. Survival to the megalopal stage was reduced (13.5% lower) in the combined reduced pH and elevated temperature treatment relative to the control. First-stage (J1) juveniles delayed molting by 1.5 days in the reduced pH treatment, while second-stage (J2) crabs molted 3 days earlier when exposed to elevated temperature. Juvenile morphology did not differ among treatments. These results suggests that juvenile king crabs are tolerant to changes associated with climate change. Given the important role of the king crab as a grazer of macroalgae, its tolerance to climate stressors suggests that it could benefit restoration efforts aimed at making coral reefs more resilient to increasingly warm and acidic oceans into the future.

 
more » « less
Award ID(s):
2049047
NSF-PAR ID:
10367323
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Marine Biology
Volume:
169
Issue:
5
ISSN:
0025-3162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. How ocean acidification (OA) interacts with other stressors is understudied, particularly for predators and prey. We assessed long-term exposure to decreased pH and low salinity on (1) juvenile blue crab Callinectes sapidus claw pinch force, (2) juvenile hard clam Mercenaria mercenaria survival, growth, and shell structure, and (3) blue crab and hard clam interactions in filmed mesocosm trials. In 2018 and 2019, we held crabs and clams from the Chesapeake Bay, USA, in crossed pH (low: 7.0, high: 8.0) and salinity (low: 15, high: 30) treatments for 11 and 10 wk, respectively. Afterwards, we assessed crab claw pinch force and clam survival, growth, shell structure, and ridge rugosity. Claw pinch force increased with size in both years but weakened in low pH. Clam growth was negative, indicative of shell dissolution, in low pH in both years compared to the control. Growth was also negative in the 2019 high-pH/low-salinity treatment. Clam survival in both years was lowest in the low-pH/low-salinity treatment and highest in the high-pH/high-salinity treatment. Shell damage and ridge rugosity (indicative of deterioration) were intensified under low pH and negatively correlated with clam survival. Overall, clams were more severely affected by both stressors than crabs. In the filmed predator-prey interactions, pH did not substantially alter crab behavior, but crabs spent more time eating and burying in high-salinity treatments and more time moving in low-salinity treatments. Given the complex effects of pH and salinity on blue crabs and hard clams, projections about climate change on predator-prey interactions will be difficult and must consider multiple stressors. 
    more » « less
  2. Many marine species have been shown to be threatened by both ocean acidification and ocean warming which are reducing survival, altering behavior, and posing limits on physiology, especially during earlier life stages. The commercially important Florida stone crab, Menippe mercenaria , is one species that is affected by reduced seawater pH and elevated seawater temperatures. In this study, we determined the impacts of reduced pH and elevated temperature on the distribution of the stone crab larvae along the West Florida Shelf. To understand the dispersion of the larvae, we coupled the multi-scale ocean model SLIM with a larval dispersal model. We then conducted a connectivity study and evaluated the impacts of climate stressors by looking at four different scenarios which included models that represented the dispersion of stone crab larvae under: 1) present day conditions as modelled by SLIM for the temperature and NEMO-PISCES for the pH, 2) SSP1-2.6 scenario (-0.037 reduction in pH and +0.5°C compared to present-day conditions), 3) SSP2-4.5 scenario(-0.15 reduction in pH and +1.5°C) and 4) SSP5-8.5 scenario (-0.375 reduction in pH and +3.5°C). Our results show a clear impact of these climate change stressors on larval dispersal and on the subsequent stone crab distribution. Our results indicate that future climate change could result in stone crabs moving north or into deeper waters. We also observed an increase in the number of larvae settling in deeper waters (defined as the non-fishing zone in this study with depths exceeding 30 m) that are not typically part of the commercial fishing zone. The distance travelled by larvae, however, is likely to decrease, resulting in an increase of self-recruitment and decrease of the size of the sub-populations. A shift of the spawning period, to earlier in the spring, is also likely to occur. Our results suggest that habitats in the non-fishing zone cannot serve as a significant source of larvae for the habitats in the fishing zone (defined as water depth< 30 m) since there is very little exchange (< 5% of all exchanges) between the two zones. These results indicate that the stone crab populations in Florida may be susceptible to community fragmentation and that the management of the fishery should consider the potential impacts of future climate change scenarios. 
    more » « less
  3. Anthropogenic climate change is projected to affect marine ecosystems by challenging the environmental tolerance of individuals. Marine fishes may be particularly vulnerable to emergent climate stressors during early life stages. Here we focus on embryos of Pacific herring(Clupea pallasii), an important forage fish species widely distributed across the North Pacific. Embryos were reared under a range of temperatures (10-16°C) crossed with twopCO2levels (600 and 2000μatm) to investigate effects on metabolism and survival. We further tested how elevatedpCO2affects critical thermal tolerance (CTmax) by challenging embryos to short-term temperature fluctuations. Experiments were repeated on embryos collected from winter and spring spawning populations to determine if spawning phenology corresponds with different limits of environmental tolerance in offspring. We found that embryos could withstand acute exposure to 20°C regardless of spawning population or incubation treatment, but that survival was greatly reduced after 2-3 hours at 25°C. We found thatpCO2had limited effects onCTmax. The survival of embryos reared under chronically warm conditions (12°, 14°, or 16°C) was significantly lower relative to 10°C treatments in both populations. Oxygen consumption rates (MO2) were also higher at elevated temperatures andpCO2levels. However, heart contraction measurements made 48 hours afterCTmaxexposure revealed a greater increase in heart rate in embryos reared at 10°C compared to 16°C, suggesting acclimation at higher incubation temperatures. Our results indicate that Pacific herring are generally tolerant ofpCO2but are vulnerable to acute temperature stress. Importantly, spring-spawning embryos did not clearly exhibit a higher tolerance to heat stress compared to winter offspring.

     
    more » « less
  4. Across diverse taxa, sublethal exposure to abiotic stressors early in life can lead to benefits such as increased stress tolerance upon repeat exposure. This phenomenon, known as hormetic priming, is largely unexplored in early life stages of marine invertebrates, which are increasingly threatened by anthropogenic climate change. To investigate this phenomenon, larvae of the sea anemone and model marine invertebrateNematostella vectensiswere exposed to control (18 °C) or elevated (24 °C, 30 °C, 35 °C, or 39 °C) temperatures for 1 h at 3 days post-fertilization (DPF), followed by return to control temperatures (18 °C). The animals were then assessed for growth, development, metabolic rates, and heat tolerance at 4, 7, and 11 DPF. Priming at intermediately elevated temperatures (24 °C, 30 °C, or 35 °C) augmented growth and development compared to controls or priming at 39 °C. Indeed, priming at 39 °C hampered developmental progression, with around 40% of larvae still in the planula stage at 11 DPF, in contrast to 0% for all other groups. Total protein content, a proxy for biomass, and respiration rates were not significantly affected by priming, suggesting metabolic resilience. Heat tolerance was quantified with acute heat stress exposures, and was significantly higher for animals primed at intermediate temperatures (24 °C, 30 °C, or 35 °C) compared to controls or those primed at 39 °C at all time points. To investigate a possible molecular mechanism for the observed changes in heat tolerance, the expression of heat shock protein 70 (HSP70) was quantified at 11 DPF. Expression of HSP70 significantly increased with increasing priming temperature, with the presence of a doublet band for larvae primed at 39 °C, suggesting persistent negative effects of priming on protein homeostasis. Interestingly, primed larvae in a second cohort cultured to 6 weeks post-fertilization continued to display hormetic growth responses, whereas benefits for heat tolerance were lost; in contrast, negative effects of short-term exposure to extreme heat stress (39 °C) persisted. These results demonstrate that some dose-dependent effects of priming waned over time while others persisted, resulting in heterogeneity in organismal performance across ontogeny following priming. Overall, these findings suggest that heat priming may augment the climate resilience of marine invertebrate early life stagesviathe modulation of key developmental and physiological phenotypes, while also affirming the need to limit further anthropogenic ocean warming.

     
    more » « less
  5. Rising atmospheric CO 2 reduces seawater pH causing ocean acidification (OA). Understanding how resilient marine organisms respond to OA may help predict how community dynamics will shift as CO 2 continues rising. The common slipper shell snail Crepidula fornicata is a marine gastropod native to eastern North America that has been a successful invader along the western European coastline and elsewhere. It has also been previously shown to be resilient to global change stressors. To examine the mechanisms underlying C. fornicata’s resilience to OA, we conducted two controlled laboratory experiments. First, we examined several phenotypes and genome-wide gene expression of C. fornicata in response to pH treatments (7.5, 7.6, and 8.0) throughout the larval stage and then tested how conditions experienced as larvae influenced juvenile stages (i.e., carry-over effects). Second, we examined genome-wide gene expression patterns of C. fornicata larvae in response to acute (4, 10, 24, and 48 h) pH treatment (7.5 and 8.0). Both C. fornicata larvae and juveniles exhibited resilience to OA and their gene expression responses highlight the role of transcriptome plasticity in this resilience. Larvae did not exhibit reduced growth under OA until they were at least 8 days old. These phenotypic effects were preceded by broad transcriptomic changes, which likely served as an acclimation mechanism for combating reduced pH conditions frequently experienced in littoral zones. Larvae reared in reduced pH conditions also took longer to become competent to metamorphose. In addition, while juvenile sizes at metamorphosis reflected larval rearing pH conditions, no carry-over effects on juvenile growth rates were observed. Transcriptomic analyses suggest increased metabolism under OA, which may indicate compensation in reduced pH environments. Transcriptomic analyses through time suggest that these energetic burdens experienced under OA eventually dissipate, allowing C. fornicata to reduce metabolic demands and acclimate to reduced pH. Carry-over effects from larval OA conditions were observed in juveniles; however, these effects were larger for more severe OA conditions and larvae reared in those conditions also demonstrated less transcriptome elasticity. This study highlights the importance of assessing the effects of OA across life history stages and demonstrates how transcriptomic plasticity may allow highly resilient organisms, like C. fornicata , to acclimate to reduced pH environments. 
    more » « less