skip to main content


Title: Water UV-shielding in the Terrestrial Planet-forming Zone: Implications from Water Emission
Abstract

Mid-infrared spectroscopy is one of the few ways to observe the composition of the terrestrial planet-forming zone, the inner few astronomical units, of protoplanetary disks. The species currently detected in the disk atmosphere, for example, CO, CO2, H2O, and C2H2, are theoretically enough to constrain the C/O ratio on the disk surface. However, thermochemical models have difficulties in reproducing the full array of detected species in the mid-infrared simultaneously. In an effort to get closer to the observed spectra, we have included water UV-shielding as well as more efficient chemical heating into the thermochemical code Dust and Lines. We find that both are required to match the observed emission spectrum. Efficient chemical heating, in addition to traditional heating from UV photons, is necessary to elevate the temperature of the water-emitting layer to match the observed excitation temperature of water. We find that water UV-shielding stops UV photons from reaching deep into the disk, cooling down the lower layers with a higher column. These two effects create a hot emitting layer of water with a column of 1–10 × 1018cm−2. This is only 1%–10% of the water column above the dustτ= 1 surface at mid-infrared wavelengths in the models and represents <1% of the total water column.

 
more » « less
Award ID(s):
1907653
NSF-PAR ID:
10367330
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
930
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L26
Size(s):
["Article No. L26"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Carbon dioxide is an important tracer of the chemistry and physics in the terrestrial planet-forming zone. Using a thermochemical model that has been tested against the mid-infrared water emission, we reinterpret the CO2emission as observed with Spitzer. We find that both water UV-shielding and extra chemical heating significantly reduce the total CO2column in the emitting layer. Water UV-shielding is the more efficient effect, reducing the CO2column by ∼2 orders of magnitude. These lower CO2abundances lead to CO2-to-H2O flux ratios that are closer to the observed values, but CO2emission is still too bright, especially in relative terms. Invoking the depletion of elemental oxygen outside of the water midplane ice line more strongly impacts the CO2emission than it does the H2O emission, bringing the CO2-to-H2O emission in line with the observed values. We conclude that the CO2emission observed with Spitzer-IRS is coming from a thin layer in the photosphere of the disk, similar to the strong water lines. Below this layer, we expect CO2not to be present except when replenished by a physical process. This would be visible in the13CO2spectrum as well as certain12CO2features that can be observed by JWST-MIRI.

     
    more » « less
  2. Water vapor (H2O) is one of the brightest molecular emitters after carbon monoxide (CO) in galaxies with high infrared (IR) luminosity, allowing us to investigate the warm and dense phase of the interstellar medium (ISM) where star formation occurs. However, due to the complexity of its radiative spectrum, H2O is not frequently exploited as an ISM tracer in distant galaxies. Therefore, H2O studies of the warm and dense gas at high-zremain largely unexplored. In this work, we present observations conducted with the Northern Extended Millimeter Array (NOEMA) toward threez > 6 IR-bright quasarsJ2310+1855,J1148+5251, andJ0439+1634targeted in their multiple para- and ortho-H2O transitions (312 − 303, 111 − 000, 220 − 211, and 422 − 413), as well as their far-IR (FIR) dust continuum. By combining our data with previous measurements from the literature, we estimated the dust masses and temperatures, continuum optical depths, IR luminosities, and star formation rates (SFR) from the FIR continuum. We modeled the H2O lines using the MOLPOP-CEP radiative transfer code, finding that water vapor lines in our quasar host galaxies are primarily excited in the warm, dense (with a gas kinetic temperature and density ofTkin = 50 K,nH2 ∼ 104.5 − 105 cm−3) molecular medium with a water vapor column density ofNH2O ∼ 2 × 1017 − 3 × 1018 cm−3. High-JH2O lines are mainly radiatively pumped by the intense optically-thin far-IR radiation field associated with a warm dust component at temperatures ofTdust ∼ 80 − 190 K that account for < 5 − 10% of the total dust mass. In the case of J2310+1855, our analysis points to a relatively high value of the continuum optical depth at 100 μm (τ100 ∼ 1). Our results are in agreement with expectations based on the H2O spectral line energy distribution of local and high-zultra-luminous IR galaxies and active galactic nuclei (AGN). The analysis of the Boltzmann diagrams highlights the interplay between collisions and IR pumping in populating the high H2O energy levels and it allows us to directly compare the excitation conditions in the targeted quasar host galaxies. In addition, the observations enable us to sample the high-luminosity part of the H2O–total-IR (TIR) luminosity relations (LH2O − LTIR). Overall, our results point to supralinear trends that suggest H2O–TIR relations are likely driven by IR pumping, rather than the mere co-spatiality between the FIR continuum- and line-emitting regions. The observedLH2O/LTIRratios in ourz > 6 quasars do not show any strong deviations with respect to those measured in star-forming galaxies and AGN at lower redshifts. This supports the notion that H2O can be likely used to trace the star formation activity buried deep within the dense molecular clouds.

     
    more » « less
  3. Abstract An understanding of abundance and distribution of water vapor in the innermost region of protoplanetary disks is key to understanding the origin of habitable worlds and planetary systems. Past observations have shown H 2 O to be abundant and a major carrier of elemental oxygen in disk surface layers that lie within the inner few astronomical units of the disk. The combination of high abundance and strong radiative transitions leads to emission lines that are optically thick across the infrared spectral range. Its rarer isotopologue H 2 18 O traces deeper into this layer and will trace the full content of the planet-forming zone. In this work, we explore the relative distribution of H 2 16 O and H 2 18 O within a model that includes water self-shielding from the destructive effects of ultraviolet radiation. In this Letter we show that there is an enhancement in the relative H 2 18 O abundance high up in the warm molecular layer within 0.1–10 au due to self-shielding of CO, C 18 O, and H 2 O. Most transitions of H 2 18 O that can be observed with JWST will partially emit from this layer, making it essential to take into account how H 2 O self-shielding may effect the H 2 O to H 2 18 O ratio. Additionally, this reservoir of H 2 18 O -enriched gas in combination with the vertical “cold finger” effect might provide a natural mechanism to account for oxygen isotopic anomalies found in meteoritic material in the solar system. 
    more » « less
  4. Abstract

    The chemical composition of the inner region of protoplanetary disks can trace the composition of planetary-building material. The exact elemental composition of the inner disk has not yet been measured and tensions between models and observations still exist. Recent advancements have shown UV shielding to be able to increase the emission of organics. Here, we expand on these models and investigate how UV shielding may impact chemical composition in the inner 5 au. In this work, we use the model from Bosman et al. and expand it with a larger chemical network. We focus on the chemical abundances in the upper disk atmosphere where the effects of water UV shielding are most prominent and molecular lines originate. We find rich carbon and nitrogen chemistry with enhanced abundances of C2H2, CH4, HCN, CH3CN, and NH3by >3 orders of magnitude. This is caused by the self-shielding of H2O, which locks oxygen in water. This subsequently results in a suppression of oxygen-containing species like CO and CO2. The increase in C2H2seen in the model with the inclusion of water UV shielding allows us to explain the observed C2H2abundance without resorting to elevated C/O ratios as water UV shielding induced an effectively oxygen-poor environment in oxygen-rich gas. Thus, water UV shielding is important for reproducing the observed abundances of hydrocarbons and nitriles. From our model result, species like CH4, NH3, and NO are expected to be observable with the James Webb Space Telescope (JWST).

     
    more » « less
  5. ABSTRACT

    B[e] supergiants (sgB[e]) are rare objects whose evolutionary stage remains uncertain. Observationally, they display strong Balmer emission lines, infrared excess, and intrinsic polarization, indicating a non-spherical circumstellar envelope. We present a study of the sgB[e] RMC 82, using new spectropolarimetric data complemented by photometry from the ultraviolet (UV) to the mid-infrared. Our two-component model comprises a slow, dense equatorial wind wherein dust grains form and a fast polar wind. We applied the hdust radiative transfer code and Bayesian statistics to infer the parameters from a grid of 3240 pre-computed models. The model accurately reproduces the spectral energy distribution and polarized spectrum, but struggles to match the H α emission. Our results suggest a large mass-loss rate of $6.6 \times 10^{-6}\, \mathrm{{\rm M}_{\odot }\, yr^{-1}\, sr^{-1}}$. The dense wind is confined within an opening angle of 11°. The hottest dust grains are located at 277 R* with a temperature of 870 K. The dust grains are porous, with a density of 0.051 $\rm {g\, cm^{-3}}$. The central star was found to be significantly hotter than previous estimates (Teff = $27\, 000$ K). By comparing models with different components, we find that gas reprocesses a significant amount of UV radiation, shielding the dust. However, the dust also scatters UV photons back to the inner disc, increasing its temperature and H α emission. We conclude that self-consistent models, that account for the gas–dust interplay in the envelope, are essential for studying sgB[e] and similar objects.

     
    more » « less