Abstract Logjams in a stream create backwater conditions and locally force water to flow through the streambed, creating zones of transient storage within the surface and subsurface of a stream. We investigate the relative importance of logjam distribution density, logjam permeability, and discharge on transient storage in a simplified experimental channel. We use physical flume experiments in which we inject a salt tracer, monitor fluid conductivity breakthrough curves in surface water, and determine breakthrough‐curve skewness to characterize transient storage. We then develop a companion numerical model in HydroGeoSphere to reveal flow paths through the subsurface (or hyporheic zone) that contribute to some of the longest transient‐storage timescales. In both the flume experiments and numerical simulations, we observe backwater formation and an increase in hyporheic exchange at logjams. Observed complexities in transient storage behavior depend largely on surface water flow in the backwater zone. As expected, multiple successive logjams provide more pervasive hyporheic exchange by distributing the head drop at each jam, leading to distributed but shallow flow paths. Decreasing the permeability of a logjam or increasing the discharge both facilitate greater surface water storage and volumetric rate of hyporheic exchange. Understanding how logjam characteristics affect solute transport through both the channel and hyporheic zone has important management implications for rivers in forested, or historically forested, environments.
more »
« less
Conservative solute transport processes and associated transient storage mechanisms: Comparing streams with contrasting channel morphologies, land use and land cover
Abstract Land use within a watershed impacts stream channel morphology and hydrology and, therefore, in‐stream solute transport processes and associated transient storage mechanisms. This study evaluated transport processes in two contrasting stream sites where channel morphology was influenced by the surrounding land use, land cover, climate and geologic controls: Como Creek, CO, a relatively undisturbed, high gradient, forested stream with a gravel bed and complex channel morphology, and Clear Creek, IA, an incised, low‐gradient stream with low‐permeability substrate draining an agricultural landscape. We performed conservative stream tracer injections at these sites to address the following questions: (1) How does solute transport vary between streams with differing morphologies? and (2) How does solute transport at each stream site change as a function of discharge? We analysed in‐stream tracer time series data and compared results quantifying solute attenuation in surface and subsurface transient storage zones. Significant trends were observed in these metrics with varying discharge conditions at the forested site but not at the agricultural site. There was a broad range of transport mechanisms and evidence of substantial exchange with both surface and hyporheic transient storage in the relatively undisturbed, forested stream. Changing discharge conditions activated or deactivated different solute transport mechanisms in the forested site and greatly impacted advective travel time. Conversely in the simplified agricultural stream, there was a narrow range of solute transport behaviour across flows and predominantly surface transient storage at all measured discharge conditions. These results demonstrate how channel simplification inhibits available solute transport mechanisms across varying discharge conditions.
more »
« less
- PAR ID:
- 10367373
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Hydrological Processes
- Volume:
- 36
- Issue:
- 4
- ISSN:
- 0885-6087
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Land cover changes alter hydrologic (e.g., infiltration-runoff), biochemical (e.g., nutrient loads), and ecological processes (e.g., stream metabolism). We quantified differences in aquatic ecosystem respiration in two contrasting stream reaches from a forested watershed in Colorado (1st-order reach) and an agricultural watershed in Iowa (3rd-order reach). We conducted two rounds of experiments in each of these reaches, featuring four sets of continuous injections of Cl as a conservative tracer, resazurin as a proxy for aerobic respiration, and one of the following nutrient treatments: (a) N, (b) N + C, (c) N + P, and (d) C + N + P. With those methods providing consistent information about solute transport, stream respiration, and nutrient processing at the same spatiotemporal scales, we sought to address: (1) Are respiration rates correlated with conservative transport metrics in forested or agricultural streams? and (2) Can short-term modifications of stoichiometric conditions (C:N:P ratios) override respiration patterns, or do long-term physicochemical conditions control those patterns? We found greater respiration in the reach located in the forested watershed but no correlations between respiration, discharge, and advective or transient storage timescales. All the experiments conducted in the agricultural stream featured a reaction-limited transformation of resazurin, suggesting the existence of nutrient or carbon limitations on respiration that our short-term nutrient treatments did not remove. In contrast, the forested stream was characterized by nearly balanced transformation and transient storage timescales. We also found that our short-lived nutrient treatments had minimal influence on the significantly different respiration patterns observed between reaches, which are most likely driven by the longer-term and highly contrasting ambient nutrient concentrations at each site. Our experimental results agree with large-scale analyses suggesting greater microbial respiration in headwater streams in the U.S. Western Mountains region than in second-to-third-order streams in the U.S. Temperate Plains region.more » « less
-
Abstract Elevated nutrient and suspended sediment concentrations often result in negative environmental impacts within freshwater environments. Studies that directly compare suspended sediment and bioavailable nutrients between predominantly agricultural and predominantly urban watersheds during baseflow conditions are largely lacking. The purpose of this study was to determine the impacts of land cover, stream discharge, and wastewater treatment plant (WWTP) discharge on nutrient and sediment concentrations, across a large land cover gradient in Southwest Ohio streams. Weekly baseflow samples were collected from eight streams over 1 year from November, 2016 through November, 2017. Total suspended sediment, nitrate, and phosphate concentrations were measured. Results indicate that agricultural land cover and WWTPs increase nitrate and phosphate concentrations in the study area. Total suspended sediment and nitrate concentrations increased with discharge, and discharge was a relatively weak predictor of phosphate concentrations. Seasonal water quality trends varied by parameter and land use also had unique impacts on seasonal water quality trends. Results suggest that to improve water quality in the study area, efforts should focus on improving WWTP effluent treatment and agricultural land management.more » « less
-
Understanding how subsurface water storage—created and structured by the geology and geomorphology of the critical zone—governs hydrologic connectivity between landscapes and streams is essential for explaining spatial and temporal variation in stream water chemistry. Most headwater studies have focused on high‐resolution stream water chemistry at the catchment outlet, rarely examining the spatial variability among tributaries and the main channel, or how these patterns relate to the underlying geology and geomorphology. Linking upstream spatial and temporal variability with chemical dynamics at the outlet over time is even less common. We conducted weekly synoptic sampling along Lookout Creek, located within the HJ Andrews Experimental Forest Long Term Ecological Research programme. Lookout Creek is in the volcanic terrain of the western Cascades, Oregon. The catchment spans multiple geologic units (e.g., lava flows) and geomorphic features (e.g., earthflows). We measured stream chemistry along the main stem and five tributaries to assess how varying degrees of hydrologic connectivity influence solute concentrations and transport across this geologic and geomorphologic template. To identify the timing and magnitude of hydrologic connectivity between tributaries, the main stem, and the catchment outlet, we analysed spatiotemporal patterns in stream chemistry using concentration‐discharge relationships, principal component analysis, and a metric of subcatchment synchrony. We found that in previously glaciated catchments with active earthflows, solute concentrations and base‐cation‐to‐silica ratios were higher, and more solutes had a chemostatic or mobilising behaviour, indicating high subsurface storage. This variability in subsurface storage, and its influence on hydrologic connectivity, ultimately determined the degree of chemical synchrony with the catchment outlet. Our findings suggest that, under future climate scenarios with shifts in precipitation phase and timing, headwater systems with substantial subsurface storage are likely to be more chemically resilient.more » « less
-
Streams and rivers integrate and transport particulate organic carbon (POC) from an array of aquatic and terrestrial sources. Storm events greatly accelerate the transport of POC. The sequences by which individual POC inputs are mobilized and transported are not well-documented but are predicted to be temporally transient and spatially dependent because of changes in forcing functions, such as precipitation, discharge, and watershed morphology. In this study, the 3rd−4th order agricultural stream network, Clear Creek in Iowa, U.S.A., was sampled at a nested series of stations through storm events to determine how suspended POC changes over time and with distance downstream. Carbon and nitrogen stable isotope ratios were used to identify changes in POC. A temporal sequence of inputs was identified: in-channel algal production prior to heavy precipitation, row crop surface soils mobilized during peak precipitation, and material associated with the peak hydrograph that is hypothesized to be an integrated product from upstream. Tile drains delivered relatively 13 C- and 15 N-depleted particulate organic carbon that is a small contribution to the total POC inventory in the return to baseflow. The storm POC signal evolved with passage downstream, the principal transformation being the diminution of the early flush surface soil peak in response to a loss of connectivity between the hillslope and channel. Bank erosion is hypothesized to become increasingly important as the signal propagates downstream. The longitudinal evolution of the POC signal has implications for C-budgets associated with soil erosion and for interpreting the organic geochemical sedimentary record.more » « less
An official website of the United States government
