Log jams alter gradients in hydraulic head, increase the area available for hyporheic exchange by creating backwater areas, and lead to the formation of multiple channel branches and bars that drive additional exchange. Here, we numerically simulated stream‐groundwater interactions for two constructed flume systems—one without jams and one with a series of three jams—to quantify the effects of interacting jam structures and channel branches on hyporheic exchange at three stream flow rates. In simulations without jams, average hyporheic exchange rates ranged from 2.1 × 10−4to 2.9 × 10−4 m/s for various stream discharge scenarios, but with jams, exchange rates increased to a range of 1.3 × 10−3–3.5 × 10−3 m/s. Largely due to these increased hyporheic exchange rates, jams increased stream‐groundwater connectivity or decreased the turnover length that stream water travels before interacting with the hyporheic zone, by an order of magnitude, and drove long flow paths that connected multiple jams and channel threads. Decreased turnover lengths corresponded with greater reaction significance per km, a measure of the potential for the hyporheic zone to influence stream water chemistry. For low‐flow conditions, log jams increased reaction significance per km five‐fold, from 0.07 to 0.35. Jams with larger volumes led to longer hyporheic residence times and path lengths that exhibited multiple scales of exchange. Additionally, the longest flow paths connecting multiple jams occurred in the reach with multiple channel branches. These findings suggest that large gains in hydrologic connectivity can be achieved by promoting in‐stream wood accumulation and the natural formation of both jams and branching channels.
Logjams in a stream create backwater conditions and locally force water to flow through the streambed, creating zones of transient storage within the surface and subsurface of a stream. We investigate the relative importance of logjam distribution density, logjam permeability, and discharge on transient storage in a simplified experimental channel. We use physical flume experiments in which we inject a salt tracer, monitor fluid conductivity breakthrough curves in surface water, and determine breakthrough‐curve skewness to characterize transient storage. We then develop a companion numerical model in HydroGeoSphere to reveal flow paths through the subsurface (or hyporheic zone) that contribute to some of the longest transient‐storage timescales. In both the flume experiments and numerical simulations, we observe backwater formation and an increase in hyporheic exchange at logjams. Observed complexities in transient storage behavior depend largely on surface water flow in the backwater zone. As expected, multiple successive logjams provide more pervasive hyporheic exchange by distributing the head drop at each jam, leading to distributed but shallow flow paths. Decreasing the permeability of a logjam or increasing the discharge both facilitate greater surface water storage and volumetric rate of hyporheic exchange. Understanding how logjam characteristics affect solute transport through both the channel and hyporheic zone has important management implications for rivers in forested, or historically forested, environments.
more » « less- Award ID(s):
- 1819134
- NSF-PAR ID:
- 10400637
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 59
- Issue:
- 3
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Land use within a watershed impacts stream channel morphology and hydrology and, therefore, in‐stream solute transport processes and associated transient storage mechanisms. This study evaluated transport processes in two contrasting stream sites where channel morphology was influenced by the surrounding land use, land cover, climate and geologic controls: Como Creek, CO, a relatively undisturbed, high gradient, forested stream with a gravel bed and complex channel morphology, and Clear Creek, IA, an incised, low‐gradient stream with low‐permeability substrate draining an agricultural landscape. We performed conservative stream tracer injections at these sites to address the following questions: (1) How does solute transport vary between streams with differing morphologies? and (2) How does solute transport at each stream site change as a function of discharge? We analysed in‐stream tracer time series data and compared results quantifying solute attenuation in surface and subsurface transient storage zones. Significant trends were observed in these metrics with varying discharge conditions at the forested site but not at the agricultural site. There was a broad range of transport mechanisms and evidence of substantial exchange with both surface and hyporheic transient storage in the relatively undisturbed, forested stream. Changing discharge conditions activated or deactivated different solute transport mechanisms in the forested site and greatly impacted advective travel time. Conversely in the simplified agricultural stream, there was a narrow range of solute transport behaviour across flows and predominantly surface transient storage at all measured discharge conditions. These results demonstrate how channel simplification inhibits available solute transport mechanisms across varying discharge conditions.
-
Abstract The hyporheic zone is the ecotone between stream and river channel flow and groundwater that can process nutrients and improve water quality. Transient hyporheic zones occur in the riparian zone (bank storage or “lung model” exchange) during channel stage fluctuations. Recent studies show that soil pipes are widespread in stream banks and beneath floodplains, creating highly preferential flow between channel and riparian groundwater such that the traditional Darcy model of flow does not apply. We used MODFLOW with the conduit flow package to model a series of stream bank soil pipes and examined soil pipe density (number per m), length, diameter, height above baseflow water surface, connectivity, and matrix hydraulic conductivity on transient particle flow paths and total hyporheic exchange volume (i.e., bank storage) over the course of a peak flow (e.g., storm) event. We found that adding five soil pipes per meter more than doubled hyporheic volume. Soil pipe length was the most important control; adding one 1.5‐m‐long soil pipe caused a 73.4% increase in hyporheic volume. The effect of increasing soil pipe diameter on hyporheic volume leveled off at ~1 cm, as flow limitation switched from pipe flow to pipe‐matrix exchange. To validate our approach, we used the model to successfully reproduce trends from field studies. Our results highlight the need to consider soil pipes when modeling, monitoring, or managing bank storage, floodplain connectivity, or hyporheic exchange.
-
Abstract Intermittent streams currently constitute >50% of the global river network, and the number of intermittent streams is expected to increase due to changes in land use and climate. Surface flows are known to expand and contract within the headwater channel network due to changes in the water table driven by climate, often changing seasonally. However, the underlying causes of disconnections and reconnections throughout the stream network remain poorly understood and may reflect subsurface flow capacity. We assess how 3D subsurface flowpaths control local surface flows at Gibson Jack Creek in the Rocky Mountains, Idaho, USA. Water table dynamics, hydraulic gradients, and hyporheic exchange were monitored along a 200‐m section of the stream throughout the seasonal recession in WY2018. Shallow lateral hillslope‐riparian‐stream connectivity was more frequent in transects spanning perennially flowing stream reaches than intermittent reaches. During low‐flow periods, larger losing vertical hydraulic gradients were observed in paired piezometers in intermittent reaches than in adjacent perennial reaches. Contrary to dominant conceptual models, longitudinal measurements of hydrologic exchange in both intermittent and perennial reaches were seasonally variable except for one perennial reach that showed consistent significant gains. Observed drying dynamics, as well as subsurface pathways, were highly variable even over short distances (30 m). Flow probability and subsurface flow capacity at upstream locations can be assessed with an outlet hydrograph and upstream flow measurements. Accurate characterization of subsurface storage, discharge, and connection is critical to understanding the drivers of drying cycles in intermittent streams and their likely responses to future change.
-
null (Ed.)High concentrations of trace metal(loid)s exported from abandoned mine wastes and acid rock drainage pose a risk to the health of aquatic ecosystems. To determine if and when the hyporheic zone mediates metal(loid) export, we investigated the relationship between streamflow, groundwater–stream connectivity, and subsurface metal(loid) concentrations in two ~1-km stream reaches within the Bonita Peak Mining District, a US Environmental Protection Agency Superfund site located near Silverton, Colorado, USA. The hyporheic zones of reaches in two streams—Mineral Creek and Cement Creek—were characterized using a combination of salt-tracer injection tests, transient-storage modeling, and geochemical sampling of the shallow streambed (<0.7 m). Based on these data, we present two conceptual models for subsurface metal(loid) behavior in the hyporheic zones, including (1) well-connected systems characterized by strong hyporheic mixing of infiltrating stream water and upwelling groundwater and (2) poorly connected systems delineated by physical barriers that limit hyporheic mixing. The comparatively large hyporheic zone and high hydraulic conductivities of Mineral Creek created a connected stream–groundwater system, where mixing of oxygen-rich stream water and metal-rich groundwater facilitated the precipitation of metal colloids in the shallow subsurface. In Cement Creek, the precipitation of iron oxides at depth (~0.4 m) created a low-hydraulic-conductivity barrier between surface water and groundwater. Cemented iron oxides were an important regulator of metal(loid) concentrations in this poorly connected stream–groundwater system due to the formation of strong redox gradients induced by a relatively small hyporheic zone and high fluid residence times. A comparison of conceptual models to stream concentration–discharge relationships exhibited a clear link between geochemical processes occurring within the hyporheic zone of the well-connected system and export of particulate Al, Cu, Fe, and Mn, while the poorly connected system did not have a notable influence on metal concentration–discharge trends. Mineral Creek is an example of a hyporheic system that serves as a natural dissolved metal(loid) sink, whereas poorly connected systems such as Cement Creek may require a combination of subsurface remediation of sediments and mitigation of upstream, iron-rich mine drainages to reduce metal export.more » « less