skip to main content


Title: Realistic Electron Diffusion Rates and Lifetimes Due to Scattering by Electron Holes
Abstract

Plasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere‐ionosphere coupling. Recent studies have shown that electron phase space holes can pitch‐angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018,https://doi.org/10.1063/1.5039687). In this study, we have re‐evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraft observations into computing electron diffusion rates and lifetimes. The most important electron hole properties in this evaluation are their distributions in velocity and spatial scale and electric field root‐mean‐square intensity (). Using direct measurements of electron holes during a plasma injection event observed by the Van Allen Probe at, we find that when4 mV/m electron lifetimes can drop below 1 h and are mostly within strong diffusion limits at energies below10 keV. During an injection observed by the THEMIS spacecraft at, electron holes with even typical intensities (1 mV/m) can deplete low‐energy (a few keV) plasma sheet electrons within tens of minutes following injections and convection from the tail. Our results confirm that electron holes are a significant contributor to plasma sheet electron precipitation during injections.

 
more » « less
Award ID(s):
1902699 2026680
NSF-PAR ID:
10374867
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
126
Issue:
9
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the average distribution of energetic electrons in Jupiter's plasma sheet and outer radiation belt near the magnetic equator during Juno's first 29 orbits. Juno observed a clear decrease of magnetic field amplitude and enhancement of energetic electron fluxes over 0.1–1,000 keV energies when traveling through the plasma sheet. In the radiation belts, Juno observed pancake‐shaped electron distributions with high fluxes at ∼90° pitch angle and whistler‐mode waves. Our survey indicates that the statistical electron flux at each energy tends to increase fromto. The equatorial pitch angle distributions are isotropic or field‐aligned in the plasma sheet and gradually become pancake‐shaped at. The electron phase space density gradients atMeV/G are relatively small atand become positive over, suggesting the dominant role of adiabatic radial transport at highershells, and the possible loss processes at lowershells.

     
    more » « less
  2. Abstract

    We present a statistical investigation of the effects of interplanetary magnetic field (IMF) on hemispheric asymmetry in auroral currents. Nearly 6 years of magnetic field measurements from Swarm A and C satellites are analyzed. Bootstrap resampling is used to remove the difference in the number of samples and IMF conditions between the local seasons and the hemispheres. Currents are stronger in Northern Hemisphere (NH) than Southern Hemisphere (SH) for IMF Bin NH (Bin SH) in most local seasons under both signs of IMF B. For Bin NH (Bin SH), the hemispheric difference in currents is small except in local winter when currents in NH are stronger than in SH. During Band Bin NH (Band Bin SH), the largest hemispheric asymmetry occurs in local winter and autumn, when the NH/SH ratio of field aligned current (FAC) is 1.180.09 in winter and 1.170.09 in autumn. During Band Bin NH (Band Bin SH), the largest asymmetry is observed in local autumn with NH/SH ratio of 1.160.07 for FAC. We also find an explicit Beffect on auroral currents in a given hemisphere: on average Bin NH and Bin SH causes larger currents than vice versa. The explicit Beffect on divergence‐free current during IMF Bis in very good agreement with the Beffect on the cross polar cap potential from the Super Dual Auroral Radar Network dynamic model except at SH equinox and NH summer.

     
    more » « less
  3. Abstract

    Terrestrial lightning frequently serves as a loss mechanism for energetic electrons in the Van Allen radiation belts, leading to lightning‐induced electron precipitation (LEP). Regardless of the specific causes, energetic electron precipitation from the radiation belts in general has a significant influence on the ozone concentration in the stratosphere and mesosphere. The atmospheric chemical effects induced by LEP have been previously investigated using subionospheric VLF measurements at Faraday station, Antarctica (65.25°S, 64.27°W,L= 2.45). However, there exist large variations in the precipitation flux, ionization production, and occurrence rate of LEP events depending on the peak current of the parent lightning discharge, as well as the season, location, and intensity of the thunderstorm activity. These uncertainties motivate us to revisit the calculation of atmospheric chemical changes produced by LEP. In this study, we combine a well‐validated LEP model and first‐principles atmospheric chemical simulation, and investigate three intense storms in the year of 2013, 2015, and 2017 at the magnetic latitude of 50., 32., and 35., respectively. Modeling results show that the LEP events in these storms can cumulatively drive significant changes in the,, andconcentration in the mesosphere. These changes are as high as,, andat 75–85 km altitude, respectively, and comparable to the effects typically induced by other types of radiation belt electron precipitation events. Considering the high occurrence rate of thunderstorms around the globe, the long‐term global chemical effects produced by LEP events need to be properly quantified.

     
    more » « less
  4. Abstract

    A number of interdependent conditions and processes contribute to ionospheric‐origin energetic (10 eV to several keV) ion outflows. Due to these interdependences and the associated observational challenges, energetic ion outflows remain a poorly understood facet of atmosphere‐ionosphere‐magnetosphere coupling. Here we demonstrate the relationship between east‐west magnetic field fluctuations () and energetic outflows in the magnetosphere‐ionosphere transition region. We use dayside cusp region FAST satellite observations made near apogee (4,180‐km altitude) near fall equinox and solstices in both hemispheres to derive statistical relationships between ion upflow andspectral power as a function of spacecraft frame frequency bands between 0 and 4 Hz. Identification of ionospheric‐origin energetic ion upflows is automated, and the spectral powerin each frequency band is obtained via integration ofpower spectral density. Derived relationships are of the formfor upward ion fluxat 130‐km altitude, withthe mapped upward ion flux for a nominal spectral power nT. The highest correlation coefficients are obtained for spacecraft frame frequencies0.1–0.5 Hz. Summer solstice and fall equinox observations yield power law indices0.9–1.3 and correlation coefficients, while winter solstice observations yield0.4–0.8 with. Mass spectrometer observations reveal that the oxygen/hydrogen ion composition ratio near summer solstice is much greater than the corresponding ratio near winter. These results reinforce the importance of ion composition in outflow models. If observedperturbations result from Doppler‐shifted wave structures with near‐zero frequencies, we show that spacecraft frame frequencies0.1–0.5 Hz correspond to perpendicular spatial scales of several to tens of kilometers.

     
    more » « less
  5. Abstract

    A graphGis said to be 2‐divisible if for all (nonempty) induced subgraphsHofG,can be partitioned into two setssuch thatand. (Heredenotes the clique number ofG, the number of vertices in a largest clique ofG). A graphGis said to be perfectly divisible if for all induced subgraphsHofG,can be partitioned into two setssuch thatis perfect and. We prove that if a graph is‐free, then it is 2‐divisible. We also prove that if a graph is bull‐free and either odd‐hole‐free orP5‐free, then it is perfectly divisible.

     
    more » « less