skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectra of Magnetic Turbulence in a Relativistic Plasma
Abstract We present a phenomenological and numerical study of strong Alfvénic turbulence in a magnetically dominated collisionless relativistic plasma with a strong background magnetic field. In contrast with the nonrelativistic case, the energy in such turbulence is contained in magnetic and electric fluctuations. We argue that such turbulence is analogous to turbulence in a strongly magnetized nonrelativistic plasma in the regime of broken quasi-neutrality. Our 2D particle-in-cell numerical simulations of turbulence in a relativistic pair plasma find that the spectrum of the total energy has the scalingk−3/2, while the difference between the magnetic and electric energies, the so-called residual energy, has the scalingk−2.4. The electric and magnetic fluctuations at scaleℓexhibit dynamic alignment with the alignment angle scaling close to cos ϕ 1 / 4 . At scales smaller than the (relativistic) plasma inertial scale, the energy spectrum of relativistic inertial Alfvén turbulence steepens tok−3.5 more » « less
Award ID(s):
2010098
PAR ID:
10367508
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
931
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L10
Size(s):
Article No. L10
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fueling and feedback couple supermassive black holes (SMBHs) to their host galaxies across many orders of magnitude in spatial and temporal scales, making this problem notoriously challenging to simulate. We use a multi-zone computational method based on the general relativistic magnetohydrodynamic (GRMHD) code KHARMA that allows us to span 7 orders of magnitude in spatial scale, to simulate accretion onto a non-spinning SMBH from an external medium with a Bondi radius ofRB≈ 2 × 105GM/c2, whereMis the SMBH mass. For the classic idealized Bondi problem, spherical gas accretion without magnetic fields, our simulation results agree very well with the general relativistic analytic solution. Meanwhile, when the accreting gas is magnetized, the SMBH magnetosphere becomes saturated with a strong magnetic field. The density profile varies as ∼r−1rather thanr−3/2and the accretion rate M ̇ is consequently suppressed by over 2 orders of magnitude below the Bondi rate M ̇ B . We find continuous energy feedback from the accretion flow to the external medium at a level of 10 2 M ̇ c 2 5 × 10 5 M ̇ B c 2 . Energy transport across these widely disparate scales occurs via turbulent convection triggered by magnetic field reconnection near the SMBH. Thus, strong magnetic fields that accumulate on horizon scales transform the flow dynamics far from the SMBH and naturally explain observed extremely low accretion rates compared to the Bondi rate, as well as at least part of the energy feedback. 
    more » « less
  2. Abstract We present a new suite of numerical simulations of the star-forming interstellar medium (ISM) in galactic disks using the TIGRESS-NCR framework. Distinctive aspects of our simulation suite are (1) sophisticated and comprehensive numerical treatments of essential physical processes including magnetohydrodynamics, self-gravity, and galactic differential rotation, as well as photochemistry, cooling, and heating coupled with direct ray-tracing UV radiation transfer and resolved supernova feedback and (2) wide parameter coverage including the variation in metallicity over Z Z / Z 0.1 - 3 , gas surface density Σgas∼ 5–150Mpc−2, and stellar surface density Σstar∼ 1–50Mpc−2. The range of emergent star formation rate surface density is ΣSFR∼ 10−4–0.5Mkpc−2yr−1, and ISM total midplane pressure isPtot/kB= 103–106cm−3K, withPtotequal to the ISM weight W . For given Σgasand Σstar, we find Σ SFR Z 0.3 . We provide an interpretation based on the pressure-regulated feedback-modulated (PRFM) star formation theory. The total midplane pressure consists of thermal, turbulent, and magnetic stresses. We characterize feedback modulation in terms of the yield ϒ, defined as the ratio of each stress to ΣSFR. The thermal feedback yield varies sensitively with both weight and metallicity as ϒ th W 0.46 Z 0.53 , while the combined turbulent and magnetic feedback yield shows weaker dependence ϒ turb + mag W 0.22 Z 0.18 . The reduction in ΣSFRat low metallicity is due mainly to enhanced thermal feedback yield, resulting from reduced attenuation of UV radiation. With the metallicity-dependent calibrations we provide, PRFM theory can be used for a new subgrid star formation prescription in cosmological simulations where the ISM is unresolved. 
    more » « less
  3. Abstract We survey 20 reconnection outflow events observed by Magnetospheric MultiScale in the low-βand high-Alfvén-speed regime of the Earth’s magnetotail to investigate the scaling of ion bulk heating produced by reconnection. The range of inflow Alfvén speeds (800–4000 km s−1) and inflow ionβ(0.002–1) covered by this study is in a plasma regime that could be applicable to the solar corona and flare environments. We find that the observed ion heating increases with increasing inflow (upstream) Alfvén speed,VA, based on the reconnecting magnetic field and the upstream plasma density. However, ion heating does not increase linearly as a function of available magnetic energy per particle, m i V A 2 . Instead, the heating increases progressively less as m i V A 2 rises. This is in contrast to a previous study using the same data set, which found that electron heating in this high-Alfvén-speed and low-βregime scales linearly with m i V A 2 , with a scaling factor nearly identical to that found for the low-VAand high-βmagnetopause. Consequently, the ion-to-electron heating ratio in reconnection exhausts decreases with increasing upstreamVA, suggesting that the energy partition between ions and electrons in reconnection exhausts could be a function of the available magnetic energy per particle. Finally, we find that the observed difference in ion and electron heating scaling may be consistent with the predicted effects of a trapping potential in the exhaust, which enhances electron heating, but reduces ion heating. 
    more » « less
  4. Abstract We show that the affine vertex superalgebra V k ( o s p 1 | 2 n ) V^{k}(\mathfrak{osp}_{1|2n})at generic level 𝑘 embeds in the equivariant 𝒲-algebra of s p 2 n \mathfrak{sp}_{2n}times 4 n 4nfree fermions.This has two corollaries:(1) it provides a new proof that, for generic 𝑘, the coset Com ( V k ( s p 2 n ) , V k ( o s p 1 | 2 n ) ) \operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}),V^{k}(\mathfrak{osp}_{1|2n}))is isomorphic to W ( s p 2 n ) \mathcal{W}^{\ell}(\mathfrak{sp}_{2n})for = ( n + 1 ) + ( k + n + 1 ) / ( 2 k + 2 n + 1 ) \ell=-(n+1)+(k+n+1)/(2k+2n+1), and(2) we obtain the decomposition of ordinary V k ( o s p 1 | 2 n ) V^{k}(\mathfrak{osp}_{1|2n})-modules into V k ( s p 2 n ) W ( s p 2 n ) V^{k}(\mathfrak{sp}_{2n})\otimes\mathcal{W}^{\ell}(\mathfrak{sp}_{2n})-modules.Next, if 𝑘 is an admissible level and ℓ is a non-degenerate admissible level for s p 2 n \mathfrak{sp}_{2n}, we show that the simple algebra L k ( o s p 1 | 2 n ) L_{k}(\mathfrak{osp}_{1|2n})is an extension of the simple subalgebra L k ( s p 2 n ) W ( s p 2 n ) L_{k}(\mathfrak{sp}_{2n})\otimes{\mathcal{W}}_{\ell}(\mathfrak{sp}_{2n}).Using the theory of vertex superalgebra extensions, we prove that the category of ordinary L k ( o s p 1 | 2 n ) L_{k}(\mathfrak{osp}_{1|2n})-modules is a semisimple, rigid vertex tensor supercategory with only finitely many inequivalent simple objects.It is equivalent to a certain subcategory of W ( s p 2 n ) \mathcal{W}_{\ell}(\mathfrak{sp}_{2n})-modules.A similar result also holds for the category of Ramond twisted modules.Due to a recent theorem of Robert McRae, we get as a corollary that categories of ordinary L k ( s p 2 n ) L_{k}(\mathfrak{sp}_{2n})-modules are rigid. 
    more » « less
  5. Abstract Ultra-high-energy cosmic rays (UHECRs), particles characterized by energies exceeding 1018eV, are generally believed to be accelerated electromagnetically in high-energy astrophysical sources. One promising mechanism of UHECR acceleration is magnetized turbulence. We demonstrate from first principles, using fully kinetic particle-in-cell simulations, that magnetically dominated turbulence accelerates particles on a short timescale, producing a power-law energy distribution with a rigidity-dependent, sharply defined cutoff well approximated by the form f cut E , E cut = sech ( E / E cut ) 2 . Particle escape from the turbulent accelerating region is energy dependent, withtesc∝E−δandδ∼ 1/3. The resulting particle flux from the accelerator follows dN / dEdt E s sech ( E / E cut ) 2 , withs∼ 2.1. We fit the Pierre Auger Observatory’s spectrum and composition measurements, taking into account particle interactions between acceleration and detection, and show that the turbulence-associated energy cutoff is well supported by the data, with the best-fitting spectral index being s = 2.1 0.13 + 0.06 . Our first-principles results indicate that particle acceleration by magnetically dominated turbulence may constitute the physical mechanism responsible for UHECR acceleration. 
    more » « less