skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: First Observational Evidence for the Role of Polar Vortex Strength in Modulating the Activity of Planetary Waves in the MLT Region
Abstract Based on the meteor winds measured at Mohe (MH; 53.5°N, 122.3°E) and the reanalysis data, we investigate the variations of planetary waves in the mesosphere and lower thermosphere (MLT) region during the 2019/2020 Arctic winter. Four stratospheric polar warmings, including two sudden stratospheric warmings (SSWs), are observed from November 2019 to March 2020. Quasi‐10‐day waves (Q10DWs) are found to be enhanced following three of these warmings in the zonal winds in the MLT region over MH, but unusually weak after the SSW in February 2020. The trigger mechanisms of the enhanced Q10DWs are investigated and the reason for the unusually weak Q10DWs in February is revealed. Upward propagations and in situ generations of Q10DWs are both limited during the February SSW. Our analysis indicates that Q10DWs in the MLT region in February 2020 are largely inhibited by the extremely strong polar vortex and a lack of mesospheric instability.  more » « less
Award ID(s):
1744033
PAR ID:
10367529
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
3
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present an analysis of planetary‐scale oscillations during sudden stratospheric warming (SSW) events based on data obtained from a meteor radar located at Mohe (MH, 53.5°N, 122.3°E), the Aura satellite and Modern‐Era Retrospective analysis for Research and Applications, Version 2 data (MERRA2). The planetary‐scale oscillations in the mesosphere and lower thermosphere (MLT) region during eight SSW events from 2012 to 2019 have been statistically investigated. Our analysis reveals that the enhancement or the generation of westward propagating quasi 16‐day oscillation with wavenumber 1 (W1) is a common feature during SSWs over MH. A strong enhancement of the quasi 4‐day oscillation during the 2018/2019 SSW is captured by both radar and satellite observations. The amplified quasi 4‐day oscillation has a period of ~4.3 days in both meridional and zonal winds and with a wavenumber of W2 in the zonal component. Using the meteor radar and MERRA2 data, the vertical structure of the quasi 4‐day oscillation from the stratosphere to the lower thermosphere is derived. The upward propagating feature of the quasi 4‐day oscillation in the meridional component indicates that the oscillation is very likely generated in the lower mesosphere. The mesospheric zonal wind reversal after an elevated stratopause event is observed during the SSW, which results in a negative meridional gradient of the quasi‐geostrophic potential vorticity. Our results not only reveal that the amplified quasi 4‐day oscillation in the MLT region is associated with the 2018/2019 SSW but also suggest that the amplification is originally generated around 60 km due to barotropic/baroclinic instability and propagates upward to MLT region. 
    more » « less
  2. The response of the thermospheric daytime longitudinally averaged zonal and meridional winds and neutral temperature to the 2020/2021 major sudden stratospheric warming (SSW) is studied at low-to middle latitudes (0- 40N) using observations by NASA’s ICON and GOLD satellites. The major SSW commenced on 1 January 2021 and lasted for several days. Results are compared with the non-SSW winter of 2019/2020 and pre-SSW period of December 2020. Major changes in winds and temperature are observed during the SSW. The northward and westward winds are enhanced in the thermosphere especially above ∼140 km during the warming event, while temperature around 150 km drops up to 50 K compared to the pre-SSW phase. Changes in the zonal and meridional winds are likely caused by the SSW-induced changes in the propagation and dissipation conditions of internal atmospheric waves. Changes in the horizontal circulation during the SSW can generate upwelling at low-latitudes, which can contribute to the adiabatic cooling of the low-latitude thermosphere. The observed changes during the major SSW are a manifestation of long-range vertical coupling in the atmosphere. 
    more » « less
  3. Abstract It is well known that stratospheric sudden warmings (SSWs) are a result of the interaction between planetary waves (PWs) and the stratospheric polar vortex. SSWs occur when breaking PWs slow down or even reverse this zonal wind jet and induce a sinking motion that adiabatically warms the stratosphere and lowers the stratopause. In this paper we characterize this downward progression of stratospheric temperature anomalies using 18 years (2003–2020) of Sounding of the Atmosphere using Broadband Radiometry (SABER) observations. SABER temperatures, derived zonal winds, PW activity and gravity wave (GW) activity during January and February of each year indicate a high‐degree of year‐to‐year variability. From 11 stratospheric warming events (9 major and 2 minor events), the descent rate of the stratopause altitude varies from 0.5 to 2 km/day and the lowest altitude the stratopause descends to varies from <20 to ∼50 km (i.e., no descent). A composite analysis of temperature and squared GW amplitude anomalies indicate that the downward descent of temperature anomalies from 50 to ∼25 km lags the downward progression of increased GW activity. This increased GW activity coincides with the weakening and reversal of the westward zonal winds in agreement with previous studies. Our study suggests that although PWs drive the onset of SSWs at 30 km, GWs also play a role in contributing to the descent of temperature anomalies from the stratopause to the middle and lower stratosphere. 
    more » « less
  4. Abstract Sudden stratospheric warmings (SSWs) are impressive fluid dynamical events in which large and rapid temperature increases in the winter polar stratosphere (∼10–50 km) are associated with a complete reversal of the climatological wintertime westerly winds. SSWs are caused by the breaking of planetary‐scale waves that propagate upwards from the troposphere. During an SSW, the polar vortex breaks down, accompanied by rapid descent and warming of air in polar latitudes, mirrored by ascent and cooling above the warming. The rapid warming and descent of the polar air column affect tropospheric weather, shifting jet streams, storm tracks, and the Northern Annular Mode, making cold air outbreaks over North America and Eurasia more likely. SSWs affect the atmosphere above the stratosphere, producing widespread effects on atmospheric chemistry, temperatures, winds, neutral (nonionized) particles and electron densities, and electric fields. These effects span both hemispheres. Given their crucial role in the whole atmosphere, SSWs are also seen as a key process to analyze in climate change studies and subseasonal to seasonal prediction. This work reviews the current knowledge on the most important aspects of SSWs, from the historical background to dynamical processes, modeling, chemistry, and impact on other atmospheric layers. 
    more » « less
  5. Abstract Using data collected from the Arecibo incoherent scatter radar during 5–10 February 2016, we present a study on the quarterdiurnal tide (QDT) from 250 to 360 km. A sudden stratospheric warming (SSW) event occurred on 8 February coincided with our observation. The maximum amplitude of the QDT, at ~37 m/s, is comparable with the diurnal tide and much larger than the semidiurnal tide. The QDT is largely evanescent. Our results manifest that theFregion QDT could be as important as the diurnal and semidiurnal tides. The tidal waves show large variability before and after the commencement of the SSW. Our analysis indicates that the enhancement of the QDT is most likely due to the effect of the SSW. Nonlinear interaction of the diurnal tide with the terdiurnal tide is found to play a significant role in amplifying the QDT during the SSW event. 
    more » « less