Abstract It is well known that stratospheric sudden warmings (SSWs) are a result of the interaction between planetary waves (PWs) and the stratospheric polar vortex. SSWs occur when breaking PWs slow down or even reverse this zonal wind jet and induce a sinking motion that adiabatically warms the stratosphere and lowers the stratopause. In this paper we characterize this downward progression of stratospheric temperature anomalies using 18 years (2003–2020) of Sounding of the Atmosphere using Broadband Radiometry (SABER) observations. SABER temperatures, derived zonal winds, PW activity and gravity wave (GW) activity during January and February of each year indicate a high‐degree of year‐to‐year variability. From 11 stratospheric warming events (9 major and 2 minor events), the descent rate of the stratopause altitude varies from 0.5 to 2 km/day and the lowest altitude the stratopause descends to varies from <20 to ∼50 km (i.e., no descent). A composite analysis of temperature and squared GW amplitude anomalies indicate that the downward descent of temperature anomalies from 50 to ∼25 km lags the downward progression of increased GW activity. This increased GW activity coincides with the weakening and reversal of the westward zonal winds in agreement with previous studies. Our study suggests that although PWs drive the onset of SSWs at 30 km, GWs also play a role in contributing to the descent of temperature anomalies from the stratopause to the middle and lower stratosphere. 
                        more » 
                        « less   
                    
                            
                            Sudden Stratospheric Warmings
                        
                    
    
            Abstract Sudden stratospheric warmings (SSWs) are impressive fluid dynamical events in which large and rapid temperature increases in the winter polar stratosphere (∼10–50 km) are associated with a complete reversal of the climatological wintertime westerly winds. SSWs are caused by the breaking of planetary‐scale waves that propagate upwards from the troposphere. During an SSW, the polar vortex breaks down, accompanied by rapid descent and warming of air in polar latitudes, mirrored by ascent and cooling above the warming. The rapid warming and descent of the polar air column affect tropospheric weather, shifting jet streams, storm tracks, and the Northern Annular Mode, making cold air outbreaks over North America and Eurasia more likely. SSWs affect the atmosphere above the stratosphere, producing widespread effects on atmospheric chemistry, temperatures, winds, neutral (nonionized) particles and electron densities, and electric fields. These effects span both hemispheres. Given their crucial role in the whole atmosphere, SSWs are also seen as a key process to analyze in climate change studies and subseasonal to seasonal prediction. This work reviews the current knowledge on the most important aspects of SSWs, from the historical background to dynamical processes, modeling, chemistry, and impact on other atmospheric layers. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10374956
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Reviews of Geophysics
- Volume:
- 59
- Issue:
- 1
- ISSN:
- 8755-1209
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract The purpose of this study is to quantify the effects of coupled chemistry–climate interactions on the amplitude and structure of stratospheric temperature variability. To do so, the authors examine two simulations run on version 4 of the Whole Atmosphere Coupled Climate Model (WACCM): a “free-running” simulation that includes fully coupled chemistry–climate interactions and a “specified chemistry” version of the model forced with prescribed climatological-mean chemical composition. The results indicate that the inclusion of coupled chemistry–climate interactions increases the internal variability of temperature by a factor of ~2 in the lower tropical stratosphere and—to a lesser extent—in the Southern Hemisphere polar stratosphere. The increased temperature variability in the lower tropical stratosphere is associated with dynamically driven ozone–temperature feedbacks that are only included in the coupled chemistry simulation. The results highlight the fundamental role of two-way feedbacks between the atmospheric circulation and chemistry in driving climate variability in the lower stratosphere.more » « less
- 
            Abstract Major sudden stratospheric warmings (SSWs), vortex formation, and final breakdown dates are key highlight points of the stratospheric polar vortex. These phenomena are relevant for stratosphere‐troposphere coupling, which explains the interest in understanding their future changes. However, up to now, there is not a clear consensus on which projected changes to the polar vortex are robust, particularly in the Northern Hemisphere, possibly due to short data record or relatively moderate CO2forcing. The new simulations performed under the Coupled Model Intercomparison Project, Phase 6, together with the long daily data requirements of the DynVarMIP project in preindustrial and quadrupled CO2(4xCO2) forcing simulations provide a new opportunity to revisit this topic by overcoming the limitations mentioned above. In this study, we analyze this new model output to document the change, if any, in the frequency of SSWs under 4xCO2forcing. Our analysis reveals a large disagreement across the models as to the sign of this change, even though most models show a statistically significant change. As for the near‐surface response to SSWs, the models, however, are in good agreement as to this signal over the North Atlantic: There is no indication of a change under 4xCO2forcing. Over the Pacific, however, the change is more uncertain, with some indication that there will be a larger mean response. Finally, the models show robust changes to the seasonal cycle in the stratosphere. Specifically, we find a longer duration of the stratospheric polar vortex and thus a longer season of stratosphere‐troposphere coupling.more » « less
- 
            Abstract Deep convection associated with large-scale tropical atmospheric circulations governs tropical precipitation. Under anthropogenic warming, the weakened Walker and Hadley circulations alter tropical rainfall. Ocean circulations are also expected to change due to global warming, impacting tropical atmospheric circulation systems. From the perspective of ocean heat uptake, we investigate how ocean circulation change modulates tropical atmospheric circulation and vertical motion under CO2warming by comparing fully coupled and slab-ocean simulations. We find that the slowed South Equatorial Current and subtropical cells in the Pacific induce anomalous advective warming, reducing ocean heat uptake in the central-western tropical Pacific. This, combined with increased downward radiation at the top of atmosphere and horizontal moisture advection, escalates the moisture static energy in the air column and promotes ascent in this region, shifting the Pacific Walker circulation eastward and strengthening the Pacific Hadley circulation. Across the tropical Indian Ocean, ocean heat uptake shows a dipole-like change, increasing in the eastern Indian Ocean and seas surrounding marine continents while decreasing in the western Indian Ocean. The former ocean heat uptake increase is triggered by anomalous oceanic vertical advective cooling, which abates the moisture static energy in the air column and inhibits the ascent in the area. The latter ocean heat uptake decrease is prompted by anomalous oceanic advective warming from both horizontal and vertical directions, which enhances the moisture static energy in the air column, resulting in anomalous upward motions. Over most of the tropics, ocean dynamics help attenuate the strengthening of the gross moist stability due to CO2increase, thereby promoting ascent or weakening descent in the atmosphere. Significance StatementLarge-scale tropical atmospheric circulations are expected to weaken as a result of global warming, having a significant impact on tropical precipitation. Because the atmosphere and oceans are inextricably linked, any subtle change in one can affect the other. For this reason, it is critical to understand the role of ocean circulation change in steering the response of large-scale tropical atmospheric circulation to anthropogenic warming. This study approaches the aforementioned scientific question from the novel perspective of ocean heat uptake. It demonstrates how changes in ocean circulation affect heat uptake over tropical oceans, modifying vertical motion and the Walker and Hadley cells in the tropical atmosphere in a warming climate.more » « less
- 
            Abstract The quasi-biennial oscillation (QBO) is the dominant mode of variability in the equatorial stratosphere. It is characterized by alternating descending easterly and westerly jets over a period of approximately 28 months. It has long been known that the QBO interactions with the annual cycle, e.g., through variation in tropical upwelling, lead to variations in the descent rate of the jets and, resultantly, the QBO period. Understanding these interactions, however, has been hindered by the fact that conventional measures of the QBO convolve these interactions. Koopman formalism, derived from dynamical systems, allows one to decompose spatiotemporal datasets (or nonlinear systems) into spatial modes that evolve coherently with distinct frequencies. We use a data-driven approximation of the Koopman operator on zonal-mean zonal wind to find modes that correspond to the annual cycle, the QBO, and the nonlinear interactions between the two. From these modes, we establish a data-driven index for a “pure” QBO that is independent of the annual cycle and investigate how the annual cycle modulates the QBO. We begin with what is already known, quantifying the Holton–Tan effect, a nonlinear interaction between the QBO and the annual cycle of the polar stratospheric vortex. We then use the pure QBO to do something new, quantifying how the annual cycle changes the descent rate of the QBO, revealing annual variations with amplitudes comparable to the 30 m day−1mean descent rate. We compare these results to the annual variation in tropical upwelling and interpret them with a simple model. Significance StatementThe quasi-biennial oscillation (QBO) is a periodic cycle of winds in tropical atmosphere with a period of 28 months. The phase of QBO is known to influence other aspects of the atmosphere, including the polar vortex, but the magnitude of its effects and how it behaves are known to depend on the season. In this study, we use a data-driven method (called a Koopman decomposition) to quantify annual changes in the QBO and investigate their causes. We show that seasonal variations in the stratospheric upwelling play an important but incomplete role.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
