skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermodynamic and kinetic analyses of sintering in Al‐doped Y 2 O 3 nanoparticles
Abstract This work investigates the effects of doping on both the thermodynamics and kinetics of sintering in aluminum‐doped yttrium oxide nanoparticles (Al‐doped Y2O3), with the objective of delineating their interdependent effects at different stages of the process. Direct measurements of surface and grain boundary energies using differential scanning calorimetry showed that Al‐doping decreases both interfacial energies, leading to an increase in dihedral angle (from 152.7 ± 5.6° to 165.8 ± 5.5°) and, therefore, sintering stress. Densification and grain growth analyses showed that despite this increase in sintering stress, the onset of sintering is delayed for the Al‐doped samples, demonstrating that a large dihedral angle is a necessary but not sufficient condition for densification. The measurements of activation energies for densification and grain growth point out that Al suppresses grain boundary mobility by increasing the activation energy from 400 to 448 kJ/mol, hindering densification at the intermediate stages of sintering. At temperatures above 1150℃, grain growth is activated in the Al‐doped samples, which rapidly releases the accumulated sintering stress and exhibits a higher densification rate than in undoped Y2O3. This study demonstrates a complex interconnectivity between the thermodynamics and kinetics at different temperature ranges of sintering and reinforces the need for a comprehensive description for proper design of sintering aids.  more » « less
Award ID(s):
2015650
PAR ID:
10367541
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
105
Issue:
1
ISSN:
0002-7820
Page Range / eLocation ID:
p. 147-158
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study investigates the grain boundary energy dependence on segregated dopants in nanocrystalline zinc aluminate ceramics. Atomistic simulations of Σ3 and Σ9 grain boundaries showed that trivalent ions of varying ionic radii [Sc3+(74.5 pm), In3+(80.0 pm), Y3+(90.0 pm), and Nd3+(98.3 pm)] have a tendency to segregate to both interfaces, with Y3+presenting the highest segregation potentials. The connection between segregation and the reduction of interfacial energies was explored by measuring the grain boundary energy on nanoceramics fabricated via high‐pressure spark plasma sintering (HP‐SPS) using differential scanning calorimetry (DSC). The results revealed that Y3+doping at 0.5 mol% reduces the grain boundary energy in zinc aluminate nanoceramics from 1.1–1.3 J/m2to 0.6–0.8 J/m2; the range correlates with the observed size dependence of the excess energy, with higher values observed for the smaller grain sizes (∼17 nm). The noted decrease in interfacial energies for doped samples suggests it is indeed possible to alter the stability of zinc aluminate grain boundaries via dopant segregation. 
    more » « less
  2. Cold sintering densification and coarsening mechanisms are considered from the perspective of the nonequilibrium chemo-mechanical process known in Earth Sciences as pressure solution creep (or dissolutionprecipitation creep). This is an important mechanism of densification and deformation in many geological rock formations in the Earth’s upper crust, and although very slow in nature, it is of direct relevance to the cold sintering process. In cold sintering, we select particulate materials and identify experimental processing parameters to significantly accelerate the kinetics of dissolution-precipitation phenomena, with appropriate consideration of chemistry, applied stress, particle size and temperatures. In the theory of pressure solution, pressure-driven densification is considered to involve the consecutive stages of dissolution at grain contact points, then diffusive transport along the grain boundaries towards open pore surfaces, and then precipitation, all driven by chemical potential gradients. In this study, it is shown that cold sintering of BaTiO3, ZnO and KH2PO4 (KDP) ceramic materials proceeds by the same type of serial process, with the pressure solution creep rate being controlled by the slowest kinetic step. This is demonstrated by the values of activation energy (Ea) for densification, which are in good agreement with the existing literature on dissolution, precipitation, or coarsening. The influence of pressure on the morphology of ZnO grains also supports the pressure solution mechanism. Other characteristics that can be understood qualitatively in terms of pressure solution are observed in the in systems such as BaTiO3 and KDP. We further consider activation energies for grain growth with respect to the precipitation process, as well as evidence for coalescence and Ostwald ripening during cold sintering. For completeness we also consider materials that show significant plastic deformation under compression. Our findings point the way for new advances in densification, microstructural control, and reductions in cold sintering pressure, via the use of appropriate transient solvents in metals and hybrid organic-inorganic systems, such as the Methylammonium lead bromide (MAPBr) perovskite. 
    more » « less
  3. Abstract Polymer‐derived amorphous SiCN has excellent high‐temperature stability and properties. To reduce the shrinkage during pyrolysis and to improve the high‐temperature oxidation resistance, Y2O3was added as a filler. In this study, polymer‐derived SiCN–Y2O3composites were fabricated by mixing a polymeric precursor of SiCN with Y2O3submicron powders in different ratios. The mixtures were cross‐linked and pyrolyzed in argon. SiCN–Y2O3composites were processed using field‐assisted sintering technology at 1350°C for 5 min under vacuum. Dense SiCN–Y2O3composite pellets were successfully made with relative density higher than 98% and homogeneous microstructure. Due to low temperature and short time of the heat‐treatment, the grain growth of Y2O3was substantially inhibited. The Y2O3grain size was ∼1 μm after sintering. The composites’ heat capacity, thermal diffusivity, and thermal expansion coefficients were characterized as a function of temperature. The thermal conductivity of the composites ceramics decreased as the amount of amorphous SiCN increased and the coefficient of thermal expansion (CTE) of the composites increased with Y2O3content. However, the thermal conductivity and CTE did not follow the rule of mixture. This is likely due to the partial oxidation of SiCN and the resultant impurity phases such as Y2SiO5, Y2Si2O7, and Y4.67(SiO4)3O. 
    more » « less
  4. We report on growth and electrical properties of α-Ga2O3films prepared by halide vapor phase epitaxy (HVPE) at 500 °C on α-Cr2O3buffers predeposited on sapphire by magnetron sputtering. The α-Cr2O3buffers showed a wide microcathodoluminescence (MCL) peak near 350 nm corresponding to the α-Cr2O3bandgap and a sharp MCL line near 700 nm due to the Cr+intracenter transition. Ohmic contacts to Cr2O3were made with both Ti/Au or Ni, producing linear current–voltage ( I– V) characteristics over a wide temperature range with an activation energy of conductivity of ∼75 meV. The sign of thermoelectric power indicated p-type conductivity of the buffers. Sn-doped, 2- μm-thick α-Ga2O3films prepared on this buffer by HVPE showed donor ionization energies of 0.2–0.25 eV, while undoped films were resistive with the Fermi level pinned at ECof 0.3 eV. The I– V and capacitance–voltage ( C– V) characteristics of Ni Schottky diodes on Sn-doped samples using a Cr2O3buffer indicated the presence of two face-to-face junctions, one between n-Ga2O3and p-Cr2O3, the other due to the Ni Schottky diode with n-Ga2O3. The spectral dependence of the photocurrent measured on the structure showed the presence of three major deep traps with optical ionization thresholds near 1.3, 2, and 2.8 eV. Photoinduced current transient spectroscopy spectra of the structures were dominated by deep traps with an ionization energy of 0.95 eV. These experiments suggest another pathway to obtain p–n heterojunctions in the α-Ga2O3system. 
    more » « less
  5. Cold sintering is an emerging non-equilibrium process methodology that densifies ceramic powders at significantly reduced temperatures. This study proposes a fundamental framework to investigate its densification kinetics. By controlling four densification process variables including the transient chemistry, sintering temperature, uniaxial pressure and dwell time, the anisothermal sintering kinetics of highly densified ZnO is identified and phenomenologically modeled for its relative activation energetics. 
    more » « less