skip to main content

Title: Spatial Extents of Tropical Droughts During El Niño in Current and Future Climate in Observations, Reanalysis, and CMIP5 Models

Drought conditions significantly impact human and natural systems in the Tropics. Here, multiple observational and reanalysis products and ensembles of simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are analyzed with respect to drought areal extent over tropical land regions and its past and future relationships to the El Niño/Southern Oscillation (ENSO). CMIP5 models forced with prescribed sea surface temperatures compare well to observations in capturing the present day time evolution of the fraction of tropical land area experiencing drought conditions and the scaling of drought area and ENSO, that is, increasing tropical drought area with increasing ENSO warm phase (El Niño) strength. The ensemble of RCP8.5 simulations suggests lower end‐of‐the‐century El Niño strength‐tropical drought area sensitivity. At least some of this lower sensitivity is attributable to atmosphere‐ocean coupling, as historic coupled model simulations also exhibit lower sensitivity compared to the observations.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Global atmospheric methane growth rates have wildly fluctuated over the past three decades, which may be driven by the proportion of tropical land surface saturated by water. The El Niño/Southern Oscillation Event (ENSO) cycle drives large‐scale climatic trends globally, with El Niño events typically bringing drier weather than La Niña. In a lowland tropical wet forest in Costa Rica, we measured methane flux bimonthly from March 2016 to June 2017 and using an automated chamber system. We observed a strong drying trend for several weeks during the El Niño in 2016, reducing soil moisture below normal levels. In contrast, soil conditions had high water content prior to the drought and during the moderate La Niña that followed. Soil moisture varied across the period studied and significantly impacted methane flux. Methane consumption was greater during the driest part of the El Niño period, while during La Niña and other time periods, soils had lower methane consumption. The mean methane flux observed was −0.022 mg CH4‐C m−2hr−1, and methane was consumed at all timepoints, with lower consumption in saturated soils. Our data show that month studied, and the correlation between soil type and month significantly drove methane flux trends. Our data indicate that ENSO cycles may impact biogenic methane fluxes, mediated by soil moisture conditions. Climate projections for Central America show dryer conditions and increased El Niño frequency, further exacerbating predicted drought. These trends may lead to negative climate feedbacks, with drier conditions increasing soil methane consumption from the atmosphere.

    more » « less
  2. Abstract

    Understanding the effects of intensification of Amazon basin hydrological cycling—manifest as increasingly frequent floods and droughts—on water and energy cycles of tropical forests is essential to meeting the challenge of predicting ecosystem responses to climate change, including forest “tipping points”. Here, we investigated the impacts of hydrological extremes on forest function using 12+ years of observations (between 2001–2020) of water and energy fluxes from eddy covariance, along with associated ecological dynamics from biometry, at the Tapajós National Forest. Measurements encompass the strong 2015–2016 El Niño drought and La Niña 2008–2009 wet events. We found that the forest responded strongly to El Niño‐Southern Oscillation (ENSO): Drought reduced water availability for evapotranspiration (ET) leading to large increases in sensible heat fluxes (H). PartitioningETby an approach that assumes transpiration (T) is proportional to photosynthesis, we found that water stress‐induced reductions in canopy conductance (Gs) droveTdeclines partly compensated by higher evaporation (E). By contrast, the abnormally wet La Niña period gave higherTand lowerE, with little change in seasonalET. Both El Niño‐Southern Oscillation (ENSO) events resulted in changes in forest structure, manifested as lower wet‐season leaf area index. However, only during El Niño 2015–2016, we observed a breakdown in the strong meteorological control of transpiration fluxes (via energy availability and atmospheric demand) because of slowing vegetation functions (via shutdown ofGsand significant leaf shedding). Drought‐reducedTandGs, higherHandE, amplified by feedbacks with higher temperatures and vapor pressure deficits, signaled that forest function had crossed a threshold, from which it recovered slowly, with delay, post‐drought. Identifying such tipping point onsets (beyond which future irreversible processes may occur) at local scale is crucial for predicting basin‐scale threshold‐crossing changes in forest energy and water cycling, leading to slow‐down in forest function, potentially resulting in Amazon forests shifting into alternate degraded states.

    more » « less
  3. Abstract

    In situ observation networks and reanalyses products of the state of the atmosphere and upper ocean show well-defined, large-scale patterns of coupled climate variability on time scales ranging from seasons to several decades. We summarize these phenomena and their physics, which have been revealed by analysis of observations, by experimentation with uncoupled and coupled atmosphere and ocean models with a hierarchy of complexity, and by theoretical developments. We start with a discussion of the seasonal cycle in the equatorial tropical Pacific and Atlantic Oceans, which are clearly affected by coupling between the atmosphere and the ocean. We then discuss the tropical phenomena that only exist because of the coupling between the atmosphere and the ocean: the Pacific and Atlantic meridional modes, the El Niño–Southern Oscillation (ENSO) in the Pacific, and a phenomenon analogous to ENSO in the Atlantic. For ENSO, we further discuss the sources of irregularity and asymmetry between warm and cold phases of ENSO, and the response of ENSO to forcing. Fundamental to variability on all time scales in the midlatitudes of the Northern Hemisphere are preferred patterns of uncoupled atmospheric variability that exist independent of any changes in the state of the ocean, land, or distribution of sea ice. These patterns include the North Atlantic Oscillation (NAO), the North Pacific Oscillation (NPO), and the Pacific–North American (PNA) pattern; they are most active in wintertime, with a temporal spectrum that is nearly white. Stochastic variability in the NPO, PNA, and NAO force the ocean on days to interannual times scales by way of turbulent heat exchange and Ekman transport, and on decadal and longer time scales by way of wind stress forcing. The PNA is partially responsible for the Pacific decadal oscillation; the NAO is responsible for an analogous phenomenon in the North Atlantic subpolar gyre. In models, stochastic forcing by the NAO also gives rise to variability in the strength of the Atlantic meridional overturning circulation (AMOC) that is partially responsible for multidecadal anomalies in the North Atlantic climate known as the Atlantic multidecadal oscillation (AMO); observations do not yet exist to adequately determine the physics of the AMO. We review the progress that has been made in the past 50 years in understanding each of these phenomena and the implications for short-term (seasonal-to-interannual) climate forecasts. We end with a brief discussion of advances of things that are on the horizon, under the rug, and over the rainbow.

    more » « less
  4. Abstract

    The impact of volcanic aerosols on recent global tropical cyclone (TC) activity is examined in observations, reanalysis, and models (the Coupled Model Intercomparison Project phase 5 - CMIP5 multi-model, and one single model large ensemble). In observations, we find a reduction of TC activity only in the North Atlantic following the last three strong volcanic eruptions; that signal, however, cannot be clearly attributed to volcanoes, as all three eruptions were simultaneous with El Niño events. In reanalyses, we find no robust impact of volcanic eruptions on potential intensity (PI) and genesis indices. In models, we find a reduction in PI after volcanic eruptions in the historical simulations, but this effect is significantly reduced when differences between the model environment and observations are accounted for. Morever, the CMIP5 multi-model historical ensemble shows no effect of volcanic eruptions on a TC genesis index. Finally, there is no robust and consistent reduction in recent TC activity following recent volcanic eruptions in a large set of synthetic TCs downscaled from these simulations. Taken together, these results show that in recent eruptions volcanic aerosols did not reduce global TC activity.

    more » « less
  5. Abstract

    The La Niña and El Niño phases of the El Niño-Southern Oscillation (ENSO) have major impacts on regional rainfall patterns around the globe, with substantial environmental, societal and economic implications. Long-term perspectives on ENSO behaviour, under changing background conditions, are essential to anticipating how ENSO phases may respond under future climate scenarios. Here, we derive a 7700-year, quantitative precipitation record using carbon isotope ratios from a single species of leaf preserved in lake sediments from subtropical eastern Australia. We find a generally wet (more La Niña-like) mid-Holocene that shifted towards drier and more variable climates after 3200 cal. yr BP, primarily driven by increasing frequency and strength of the El Niño phase. Climate model simulations implicate a progressive orbitally-driven weakening of the Pacific Walker Circulation as contributing to this change. At centennial scales, high rainfall characterised the Little Ice Age (~1450–1850 CE) in subtropical eastern Australia, contrasting with oceanic proxies that suggest El Niño-like conditions prevail during this period. Our data provide a new western Pacific perspective on Holocene ENSO variability and highlight the need to address ENSO reconstruction with a geographically diverse network of sites to characterise how both ENSO, and its impacts, vary in a changing climate.

    more » « less