skip to main content


Title: VenomMaps: Updated species distribution maps and models for New World pitvipers (Viperidae: Crotalinae)
Abstract

Beyond providing critical information to biologists, species distributions are useful for naturalists, curious citizens, and applied disciplines including conservation planning and medical intervention. Venomous snakes are one group that highlight the importance of having accurate information given their cosmopolitan distribution and medical significance. Envenomation by snakebite is considered a neglected tropical disease by the World Health Organization and venomous snake distributions are used to assess vulnerability to snakebite based on species occurrence and antivenom/healthcare accessibility. However, recent studies highlighted the need for updated fine-scale distributions of venomous snakes. Pitvipers (Viperidae: Crotalinae) are responsible for >98% of snakebites in the New World. Therefore, to begin to address the need for updated fine-scale distributions, we created VenomMaps, a database and web application containing updated distribution maps and species distribution models for all species of New World pitvipers. With these distributions, biologists can better understand the biogeography and conservation status of this group, researchers can better assess vulnerability to snakebite, and medical professionals can easily discern species found in their area.

 
more » « less
Award ID(s):
1822417
NSF-PAR ID:
10367580
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
9
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    We conducted a large-scale, passive regional survey of ticks associated with wildlife of the eastern United States. Our primary goals were to better assess the current geographical distribution of exoticHaemaphysalis longicornisand to identify potential wild mammalian and avian host species. However, this large-scale survey also provided valuable information regarding the distribution and host associations for many other important tick species that utilize wildlife as hosts.

    Methods

    Ticks were opportunistically collected by cooperating state and federal wildlife agencies. All ticks were placed in the supplied vials and host information was recorded, including host species, age, sex, examination date, location (at least county and state), and estimated tick burden. All ticks were identified to species using morphology, and suspectH. longicorniswere confirmed through molecular techniques.

    Results

    In total, 1940 hosts were examined from across 369 counties from 23 states in the eastern USA. From these submissions, 20,626 ticks were collected and identified belonging to 11 different species. Our passive surveillance efforts detected exoticH. longicornisfrom nine host species from eight states. Notably, some of the earliest detections ofH. longicornisin the USA were collected from wildlife through this passive surveillance network. In addition, numerous new county reports were generated forAmblyomma americanum,Amblyomma maculatum,Dermacentor albipictus,Dermacentor variabilis, andIxodes scapularis.

    Conclusions

    This study provided data on ticks collected from animals from 23 different states in the eastern USA between 2010 and 2021, with the primary goal of better characterizing the distribution and host associations of the exotic tickH. longicornis;however, new distribution data on tick species of veterinary or medical importance were also obtained. Collectively, our passive surveillance has detected numerous new county reports forH. longicornisas well asI. scapularis.Our study utilizing passive wildlife surveillance for ticks across the eastern USA is an effective method for surveying a diversity of wildlife host species, allowing us to better collect data on current tick distributions relevant to human and animal health.

     
    more » « less
  2. Abstract

    South American subterranean rodents of the genus Ctenomys (Rodentia, Ctenomyidae, tuco-tuco) are one of the most diverse genera among mammals. Recently described species, new taxonomic revisions, and new distribution range delimitation made the revision of distribution areas and conservation status of these mammals mandatory. Implementing the first part of the DAMA protocol (document, assess, monitor, act), here we compile updated sets of species distribution range maps and use these and the number of collection localities to assess the conservation status of ctenomyids. We integrate potential for conservation in protected areas, and levels of habitat transformation to revise previous conservation status assessments and propose the first assessment for all Data Deficient or not evaluated species of tuco-tucos. Our results indicate that 53 (78%) of these species are threatened and that 47 (69%) have little or no overlap with protected areas, emphasizing the urgent need to conduct conservation efforts. Here, 18 of 22 species previously classified as Data Deficient resulted in them being put in an at-risk category (VU, EN, CR). In addition, nine species that have not been previously evaluated were classified as threatened, with these two groups comprising more than 47% of the known species. These results posit that the Ctenomyidae are the rodent family with the greatest number of species at risk of extinction. Finally, a total of 33 (49%) species have been reported from three or fewer localities; all considered threatened through the approach implemented in this study. These geographically restricted taxa should be given more attention in conservation programs since the richness of this genus relies on the survival of such species.

     
    more » « less
  3. Marine protected areas (MPAs) are among the most widely used strategy to protect marine ecosystems and are typically designed to protect specific habitats rather than a single and/or multiple species. To inform the con- servation of species of conservation concern there is the need to assess whether existing and proposed MPA designs provide protection to these species. For this, information on species spatial distribution and exposure to threats is necessary. However, this information if often lacking, particularly for mobile migratory species, such as marine turtles. To highlight the importance of this information when designing MPAs and for assessments of their effectiveness, we identified high use areas of post-nesting hawksbill turtles (Eretmochelys imbricata) in Brazil as a case study and assessed the effectiveness of Brazilian MPAs to protect important habitat for this group based on exposure to threats. Most (88%) of high use areas were found to be exposed to threats (78% to artisanal fishery and 76.7% to marine traffic), where 88.1% were not protected by MPAs, for which 86% are exposed to threats. This mismatch is driven by a lack of explicit conservation goals and targets for turtles in MPA management plans, limited spatial information on species' distribution and threats, and a mismatch in the scale of conservation initiatives. To inform future assessments and design of MPAs for species of conservation concern we suggest that managers: clearly state and make their goals and targets tangible, consider ecological scales instead of political boundaries, and use adaptative management as new information become available. 
    more » « less
  4. Abstract

    The characterization of species’ environmental niches and spatial distribution predictions based on them are now central to much of ecology and conservation, but implicitly requires decisions about the appropriate spatial scale (i.e.,grain) of analysis. Ecological theory and empirical evidence suggest that range‐resident species respond to their environment at two characteristic, hierarchical spatial grains: (1)response grain, the (relatively fine) grain at which an individual uses environmental resources, and (2)occupancy grain, the (relatively coarse) grain equivalent to a typical home range. We use a multi‐grain (MG) occupancy model, aided by fine‐grain remotely sensed imagery, to simultaneously estimate species–environment associations at both grains, conduct grain optimization to measure response grain, and apply this analysis framework to an example species: a medium‐sized bird (Tockus deckeni) in a heterogeneous East African landscape. Based on home range analysis of movement data, we calculate an occupancy grain of 1 km forT. deckeni. Using a grain optimization procedure across 32 grains from 10 to 500 m, we identify 60 m as the most strongly supported response grain for a suite of environmental variables, slightly coarser than opportunistic behavioral observations would have suggested. Validation confirms that the accuracy of the optimized MG occupancy model substantially exceeds that of equivalent single‐grain (SG) occupancy models. We further use a simulation approach to assess the potential impacts of accounting for the multi‐scale structure of species’ environmental requirements on estimates of population size. We find that the more strongly supported MG approach consistently predicts a minimum population size in the study landscape that is much lower than that provided by the SG model. This suggests that SG approaches commonly used in conservation applications could lead to overly optimistic abundance and population estimates, and that the MG approach may be more appropriate for supporting species conservation goals. More generally, we conclude that multi‐grain approaches of the sort presented, and increasingly enabled by growing high‐resolution remotely sensed data, hold great promise for offering a more mechanistic framework for assessing the appropriate grain(s) for population monitoring and management and enable more reliable estimates of abundances and species’ distributions.

     
    more » « less
  5. Abstract Aim

    Spatially explicit protections of coastal habitats determined on the current distribution of species and ecosystems risk becoming obsolete in 100 years if the movement of species ranges outpaces management action. Hence, a critical step of conservation is predicting the efficacy of management actions in future. We aimed to determine how foundational, habitat‐building species will respond to climate change in Fiji.

    Location

    The Republic of Fiji.

    Methods

    We develop species distribution models (SDMs) using MaxEnt, General Additive Models and Boosted Regression Trees and publicly available data from the Global Biodiversity Information Facility to predict changes in distribution of suitable habitat for mangrove forests, coral habitat, seagrass meadows and critical fisheries invertebrates under several IPCC climate change scenarios in 2070 or 2100. We then overlay predicted distribution models onto existing Fijian protected area network to assess whether today's conservation measures will afford protection to tomorrow's distributions.

    Results

    We found that mangrove suitability is projected to decrease along the Coral Coast and increase northward towards the Yasawa Islands due to precipitation changes. The response of seagrass meadows was predicted to be inconsistent and dependent on the climate scenario. Meanwhile, suitability for coral reefs was not predicted to decline significantly overall. The mangrove crabScylla serrata, an important resource for fisherwomen in Fiji, is projected to increase in habitat suitability while economically important sea cucumber species will have highly variable responses to climate change.

    Main conclusions

    Species distribution models are a critical tool for conservation managers, as linking spatial distribution data with future climate change scenarios can aid in the creation and resiliency of protected area programmes. New protected area designations should consider the future distribution of species to maximize benefits to those taxa.

     
    more » « less