Abstract Monitoring brine leakage from CO2geological storages (CGS) is necessary to protect shallow aquifers against contamination. A framework for designing CGS monitoring systems that optimally use both easily available shallow zone data and hard‐to‐obtain deep zone observations is developed and validated. This framework is based on calibrating a transport model using monitoring data to determine leakage source conditions and then predict the subsequent brine plume that potentially contaminates shallow aquifers. As cost considerations are expected to limit monitoring deep formations, the framework is developed to minimize the number of deep observation points (e.g., deep sensors). The best monitoring locations that yield the most worthful data for reducing predictive uncertainty is selected by integrating linear uncertainty analysis with Genetic Algorithm under this framework. Due to practical challenges, testing such a framework in the field is not feasible. Thus, the framework was tested in an intermediate‐scale soil tank, where monitoring data on brine leakage plume development from the storage zone to the shallow aquifer were collected. Predictions made by a transport model calibrated on these data were then compared with experimental measurements to evaluate data informativity and thus validate the framework's applicability. The results demonstrate the framework ability to select the optimum monitoring locations for leakage detection and model calibration. It was also found that not only deep observations, but also shallow zone data are worthful to determine source conditions. Moreover, the results showed the possibility of identifying the likely areas to be impacted in the shallow aquifer using early stage monitoring data.
more »
« less
Exploring the Impacts of Source Condition Uncertainties on Far‐Field Brine Leakage Plume Predictions in Geologic Storage of CO 2 : Integrating Intermediate‐Scale Laboratory Testing With Numerical Modeling
Abstract Natural fissures/faults or pressure‐induced fractures in the caprock confining injected CO2have been identified as a potential leakage pathways of far‐field native brine contaminating underground sources of drinking water. Developing models to simulate brine propagation through the overlaying formations and aquifers is essential to conduct reliable pre‐ and post‐risk assessments for site selection and operation, respectively. One of the primary challenges of performing such simulations is lack of adequate information about source conditions, such as hydro‐structural properties of caprock fracture/fault zone and the permeability field of the storage formation. This research investigates the impact of source condition uncertainties on the accuracy of leaking brine plume predictions. Prediction models should be able to simulate brine leakage and transport in complex multilayered geologic systems with interacting regional natural and leakage flows. As field datasets are not readily available for model testing and validation, three comprehensive intermediate‐scale laboratory experiments were used to generate high‐resolution spatiotemporal data on brine plume development under different leakage scenarios. Experimental data were used to validate a flow and transport model developed using existing code FEFLOW to simulate brine plume under varying source conditions. Spatial moment analysis was conducted to evaluate how uncertainty in source conditions impacts brine migration predictions. Results showed that inaccurately prescribing the permeability field of storage formation and caprock fractures in models can cause errors in leakage pathway and spread predictions up to ∼19% and ∼100%, respectively. These findings will help in selecting and characterizing storage sites by factoring in potential risks to shallow groundwater resources.
more »
« less
- PAR ID:
- 10367582
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 57
- Issue:
- 9
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Shallow groundwater resources overlaying deep saline formations used in carbon storage applications are subjected to a potential contamination threat by CO2/brine leakage via natural or anthropogenically-induced conductive pathways in the confining caprock. Identifying the leakage source location and rate is critical for developing remediation plans and designing corrective actions. Owing to limited information about the flow and transport characteristics of deep regimes and high cost of obtaining data on their response to CO2 injection operation, estimating accurate source settings (i.e., location and rate) can be extremely challenging. Under such conditions, Bayesian inverse frameworks become useful tools to help identify potential leakage patterns. This study tests and validates an ensemble-based data-assimilation approach that reduces the uncertainty in the prior knowledge about source settings through conditioning forward transport models using relatively inexpensive easy-to-acquire shallow zone data. The approach incorporates the newly developed ensemble smoother tool in the inversion code “PEST++” with the transport code “FEFLOW” to perform history matching and uncertainty analysis. A novel parameterization method that allows the disposition of potential source was used to search the leakage location during calibration process. In the absence of field data, the approach was validated using experimental data generated in ~8 m long soil tank simulating leakage from storage zone migrating to the shallow aquifer. The results show that source location uncertainty can be reasonably reduced using shallow zone data collected from near-surface aquifers. However, more prior information about the system and deeper data are essential to estimate a practical probability range for the leakage rate.more » « less
-
ABSTRACT:This study investigates the distinction between unreacted shale samples and those exposed to CO2-rich brine under elevated temperature (100°C) and pressure (1800 psi) conditions over 28 days. Samples underwent scratch testing under constant loading to ensure independent penetration depth, circumventing variability associated with load-dependent outcomes prevalent in progressive loading methodologies. Vertical hardness profiles revealed significant variations between reacted and unreacted regions, influenced by differential dissolution and precipitation characteristics, while horizontal hardness provided limited insights, particularly in the reacted region where higher tangential forces and deeper scratches indicated greater material compressibility. Distinct scratch path variations were observed, with fractures absent in the ductile reacted region at lower testing forces. The shale samples were sourced from the Eagle Ford Formation, providing insights into the mechanical response of carbonate-rich shale rocks in extreme environments. This research enhances understanding of shale's mechanical properties and material responses under diverse operational conditions, elucidating interactions with influential environmental factors, particularly in CO2-exposed scenarios. Conducted at a microscale level, this study offers detailed insights into material behavior, crucial for predicting long-term stability of geostructures exposed to reactive brine and potential CO2 leakage in subsurface reservoirs. 1. INTRODUCTIONThe investigation into chemical interactions between carbonate rocks and acidic brine is cruical for understanding complex mechanical and microstructural transformations essential for applications like geostructure stability, CO2 storage, and energy exploitation. Under elevated pressure and temperature conditions, the equilibrium between injected fluids and rocks undergoes alterations, leading to geochemical responses, especially with the presence of CO2 as a supercritical phase or in aqueous form (Prakash et al. 2023a; Prakash et al. 2022). In this context, investigating fracture properties becomes essential, aiming to comprehend the development and propagation of fractures within reacted formations to evaluate structural integrity and potential pathways for fluid migration.Prior geochemical investigations have explored the localized repercussions of CO2 attacks on rock permeability, shedding light on alterations attributed to carbonate precipitation sealing fractures and pores or the dissolution of diverse minerals (Burnside et al. 2013; Minardi et al. 2021). Shale rocks exposed to acidic brine predominantly undergo carbonate reactions, particularly carbonates dissolution and precipitation (Prakash et al., 2022; Prakash et al. 2023b). Experimental studies on fracture mechanics and mechanical properties have utilized conventional methods such as single edge notched bend, chevron notched beam, three-point bending, and semi-circular bending tests, acknowledging their inherent limitations (Smith & Chowdary, 1975; Bazant and Kazemi, 1990; Helmer et al. 2014; Dubey et al., 2020).more » « less
-
Abstract Dissolution trapping is one of the most dominant mechanisms for CO2 storage in subsurface porous media saturated with brine. The CO2 dissolution rate and overall fluid flow dynamics in subsurface formations can vary significantly based on permeability variation. Although some numerical simulations have focused on these factors, detailed flow behavior analysis under nonuniform permeability distribution needs further study. For this purpose, we conduct simulations on the flow behavior of CO2-dissolved brine in two different heterogeneous media. The spatial permeability variations in the cell enable the analysis of complex subsurface storage phenomena, such as changes in finger morphology and preferential dissolution path. Finally, the amount of CO2 dissolved was compared between each case, based on which we draw informed conclusions about CO2 storage sites. The results demonstrated a preferential movement of CO2-dissolved regions toward high permeability regions, whereas a poor sweep efficiency was observed due to minimum dissolution in areas with lower permeability. Furthermore, simulation results also reveal uneven CO2 concentration inside the convective fingers. This study provides fundamental insight into the change in flow behavior at heterogeneous regions, which could be translated into saline aquifer conditions. The proposed workflow in this study could be extended further to analyze complex heterogeneous storage systems at different flow regimes.more » « less
-
Abstract Microbially-induced calcium carbonate precipitation (MICP) is a biological process in which microbially-produced urease enzymes convert urea and calcium into solid calcium carbonate (CaCO3) deposits. MICP has been demonstrated to reduce permeability in shale fractures under elevated pressures, raising the possibility of applying this technology to enhance shale reservoir storage safety. For this and other applications to become a reality, non-invasive tools are needed to determine how effectively MICP seals shale fractures at subsurface temperatures. In this study, two different MICP strategies were tested on 2.54 cm diameter and 5.08 cm long shale cores with a single fracture at 60 ℃. Flow-through, pulsed-flow MICP-treatment was repeatedly applied to Marcellus shale fractures with and without sand (“proppant”) until reaching approximately four orders of magnitude reduction in apparent permeability, while a single application of polymer-based “immersion” MICP-treatment was applied to an Eagle Ford shale fracture with proppant. Low-field nuclear magnetic resonance (LF-NMR) and X-Ray computed microtomography (micro-CT) techniques were used to assess the degree of biomineralization. With the flow-through approach, these tools revealed that while CaCO3precipitation occurred throughout the fracture, there was preferential precipitation around proppant. Without proppant, the same approach led to premature sealing at the inlet side of the core. In contrast, immersion MICP-treatment sealed off the fracture edges and showed less mineral precipitation overall. This study highlights the use of LF-NMR relaxometry in characterizing fracture sealing and can help guide NMR logging tools in subsurface remediation efforts.more » « less
An official website of the United States government
