skip to main content


Title: A laminated vitrimer composite with strain sensing, delamination self-healing, deicing, and room-temperature shape restoration properties

Laminated multifunctional composites are highly desired in modern lightweight engineering structures. The purpose of this study is to develop a composite laminate with impact tolerance, delamination healing, strain sensing, Joule heating, deicing, and room temperature shape restoration functionalities. In this study, a novel self-healable and recyclable shape memory vitrimer was used as the matrix, unidirectional glass fabric was used as reinforcement, and tension programmed shape memory alloy (SMA) wires were used as z-pins. To provide multifunctionality, the programmed SMA wires were further twisted and formed into sinusoidal shape. Copper wire strands were hooked to the sinusoidal SMA z-pins to make them a closed circuit. Low velocity impact, compression after impact, damage self-healing, deicing, and room temperature shape restoration tests were conducted. The tests result show that the desired multifunctionality of the laminated composite was achieved. The hybrid laminate provides a promising design for lightweight load-carrying engineering structures.

 
more » « less
Award ID(s):
1946231
PAR ID:
10367585
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Journal of Composite Materials
Volume:
56
Issue:
14
ISSN:
0021-9983
Format(s):
Medium: X Size: p. 2267-2278
Size(s):
p. 2267-2278
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Damage healing in fiber reinforced thermoset polymer composites has been generally divided into intrinsic healing by the polymer itself and extrinsic healing by incorporation of external healing agent. In this study, we propose to use a hybrid extrinsic-intrinsic self-healing strategy to heal delamination in laminated composite induced by low velocity impact. Especially, we propose to use an intrinsic self-healing thermoset vitrimer as an external healing agent, to heal delamination in laminated thermoset polymer composites. To this purpose, we designed and synthesized a new vitrimer, machined it into powders, and strategically sprayed a layer of vitrimer powders at the interface between the laminas during manufacturing. Also, a thermoset shape memory polymer with fire-proof property was used as the matrix. As a result, incorporation of about 3% by volume of vitrimer powders made the laminate exhibit multifunctionalities such as repeated delamination healing, excellent shape memory effect, improved toughness and impact tolerance, and decent fire-proof properties. In particular, the novel vitrimer powder imparted the laminate with first cycle and second cycle delamination healing efficiencies of 98.06% and 85.93%, respectively. The laminate also exhibited high recovery stress of 65.6 MPa. This multifunctional composite laminate has a great potential in various engineering applications, for example, actuators, robotics, deployable structures, and smart fire-proof structures.

     
    more » « less
  2. Abstract

    Tension programmed shape memory polymer (SMP) fibers have been used as sutures for closing wide‐opened cracks per the close‐then‐heal strategy. However, the composite may be subjected to compression loading during service. These compression loads can reduce the amount of recoverable strain in these pre‐tensioned fibers, limiting their ability to close cracks. The purpose of this study is to investigate the effect of in‐service compression loading on the shape memory effect (SME) of composites consisting of SMP fiber and SMP matrix. To this end, pre‐stretched shape memory Polyethylene Terephthalate (PET) fibers were embedded into a shape memory vitrimer to obtain composite samples with different fiber volume fractions. The SME of both the PET fiber and the vitrimer was investigated. The effect of compression load on the SME of the composite was studied. It is found that, uniaxial compression on the composite along the fiber direction significantly reduced the shrinking ability of the embedded pre‐tensioned SMP fibers. Hence, this is a factor that needs to be considered when designing such types of self‐healing composites.

     
    more » « less
  3. Development in self-healing materials and smart composites has continuously improved for many decades and has given rise to many real-life applications with implications for engineering materials, structures, and human beings who rely on these technological innovations to further human endeavor. This study involves the use of intrinsic selfhealing ability of poly (ethylene-co-methacrylic acid) thermoplastic, known by its commercial name as Surlyn 9520©, and combined two-way shape memory effect with Di cumyl-peroxide (DCP) cross-linked polybutadiene elastomer to achieve crack narrowing and closure with subsequent healing of the polymer blend surface. The simple batch mixing process resulted in an immiscible yet compatible blend, determined by two distinct melting peaks from DSC characterization and FTIR spectroscopy analysis. Different blends ratios of 80/20, 70/30, 60/40, 50/50 were investigated and characterized. However, the 80/20 blend was chosen to demonstrate the significance of the two-way shape memory effect, where a material experiences elongation upon cooling and contraction upon heating to achieve crack closure and effectual healing. Two sets of samples were studied; control Sample known as 2A and 2B samples were one time programmed to about 300% strain. Self-healing, which is a function of the poly(ethylene-co-methacrylic) acid component of the blend, was established for both sets of specimens. The flexural properties from three-point bending test indicate that although both sets of samples achieved good healing efficiencies, the 2B programmed samples displayed better healing efficiencies than the control by 30%.

     
    more » « less
  4. Herein, we present a new sandwich panel composed of a carbon fiber grid-stiffened shape memory vitrimer (SMV) core. The sandwich panels were fabricated via a pin-guided dry-weaving technology, and their impact responses were evaluated via low-velocity impact testing. The main failure mode observed after the first round of impact was the transverse cracking of the SMV matrix in the sandwich core. The healing efficiency according to the crack initiation energy (CIE) was found to be 76.5% after the first healing cycle. Even after the second healing cycle, the healing efficiency was greater than 72%. From the low-velocity impact tests, reinforcing the pure SMV core with a grid-skeleton enhanced the impact resistance significantly, that is, the crack initiation energy and peak load were increased by 64.0% and 169.0%, respectively. The results also show that smaller bay area leads to higher impact resistance. With the repeated crack healing, increased impact tolerance, and shape memory effect, it is expected that the sandwich panels will have a good possibility for usage in aerospace and automotive applications.

     
    more » « less
  5. Abstract

    High-performance lightweight architectures, such as metallic microlattices with excellent mechanical properties have been 3D printed, but they do not possess shape memory effect (SME), limiting their usages for advanced engineering structures, such as serving as a core in multifunctional lightweight sandwich structures. 3D printable self-healing shape memory polymer (SMP) microlattices could be a solution. However, existing 3D printable thermoset SMPs are limited to either low strength, poor stress memory, or non-recyclability. To address this issue, a new thermoset polymer, integrated with high strength, high recovery stress, perfect shape recovery, good recyclability, and 3D printability using direct light printing, has been developed in this study. Lightweight microlattices with various unit cells and length scales were printed and tested. The results show that the cubic microlattice has mechanical strength comparable to or even greater than that of metallic microlattices, good SME, decent recovery stress, and recyclability, making it the first multifunctional lightweight architecture (MLA) for potential multifunctional lightweight load carrying structural applications.

     
    more » « less