skip to main content

Title: Spectroscopic Line Modeling of the Fastest Rotating O-type Stars

We present a spectroscopic analysis of the most rapidly rotating stars currently known, VFTS 102 (vesini=649±52km s−1; O9: Vnnne+) and VFTS 285 (vesini=610±41km s−1; O7.5: Vnnn), both members of the 30 Dor complex in the Large Magellanic Cloud. This study is based on high-resolution ultraviolet spectra from Hubble Space Telescope/Cosmic Origins Spectrograph and optical spectra from the Very Large Telescope (VLT) X-shooter plus archival VLT GIRAFFE spectra. We utilize numerical simulations of their photospheres, rotationally distorted shape, and gravity darkening to calculate model spectral line profiles and predicted monochromatic absolute fluxes. We use a guided grid search to investigate parameters that yield best fits for the observed features and fluxes. These fits produce estimates of the physical parameters for these stars (plus a Galactic counterpart,ζOph) including the equatorial rotational velocity, inclination, radius, mass, gravity, temperature, and reddening. We find that both stars appear to be radial-velocity constant. VFTS 102 is rotating at critical velocity, has a modest He enrichment, and appears to share the motion of the nearby OB-association LH 99. These properties suggest that the star was spun up through a close binary merger. VFTS 285 is rotating at 95% of critical more » velocity, has a strong He enrichment, and is moving away from the R136 cluster at the center of 30 Dor. It is mostly likely a runaway star ejected by a supernova explosion that released the components of the natal binary system.

« less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Article No. 35
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (R∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion ofσrv=2.50.8+1.3km s−1, which results in a dynamical mass ofM1/2(rh)=84+12×105Mand a mass-to-light ratio ofM/LV=440250+650M/L. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L> 80M/L). However, we do not resolve a metallicity dispersion (σ[Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in linemore »with its orbital parameters. Intriguingly, Grus I has among the lowest central densities (ρ1/23.52.1+5.7×107Mkpc−3) of the UFDs that are not known to be tidally disrupting. Models of the formation and evolution of UFDs will need to explain the diversity of these central densities, in addition to any diversity in the outer regions of these relic galaxies.

    « less
  2. Abstract

    We present the Distant Giants Survey, a three-year radial velocity campaign to measure P(DG∣CS), the conditional occurrence of distant giant planets (DG;Mp∼ 0.3–13MJ,P> 1 yr) in systems hosting a close-in small planet (CS;Rp< 10R). For the past two years, we have monitored 47 Sun-like stars hosting small transiting planets detected by TESS. We present the selection criteria used to assemble our sample and report the discovery of two distant giant planets, TOI-1669 b and TOI-1694 c. For TOI-1669 b we find thatMsini=0.573±0.074MJ,P= 502 ± 16 days, ande< 0.27, while for TOI-1694 c,Msini=1.05±0.05MJ,P= 389.2 ± 3.9 days, ande= 0.18 ± 0.05. We also confirmed the 3.8 days transiting planet TOI-1694 b by measuring a true mass ofM= 26.1 ± 2.2M. At the end of the Distant Giants Survey, we will incorporate TOI-1669 b and TOI-1694 c into our calculation of P(DG∣CS), a crucial statistic for understanding the relationship between outer giants and small inner companions.

  3. Abstract

    The Parker Solar Probe (PSP) entered a region of sub-Alfvénic solar wind during encounter 8, and we present the first detailed analysis of low-frequency turbulence properties in this novel region. The magnetic field and flow velocity vectors were highly aligned during this interval. By constructing spectrograms of the normalized magnetic helicity, cross-helicity, and residual energy, we find that PSP observed primarily Alfvénic fluctuations, a consequence of the highly field-aligned flow that renders quasi-2D fluctuations unobservable to PSP. We extend Taylor’s hypothesis to sub- and super-Alfvénic flows. Spectra for the fluctuating forward and backward Elsässer variables (z±, respectively) are presented, showing thatz+modes dominatezby an order of magnitude or more, and thez+spectrum is a power law in frequency (parallel wavenumber)f−3/2(k3/2) compared to the convexzspectrum withf−3/2(k3/2) at low frequencies, flattening around a transition frequency (at which the nonlinear and Alfvén timescales are balanced) tof−1.25at higher frequencies. The observed spectra are well fitted using a spectral theory for nearly incompressible magnetohydrodynamics assuming a wavenumber anisotropykk3/4, that thez+fluctuations experience primarily nonlinear interactions, and that the minorityzfluctuations experience both nonlinear and Alfvénic interactions withz+fluctuations. The density spectrum is a powermore »law that resembles neither thez±spectra nor the compressible magnetic field spectrum, suggesting that these are advected entropic rather than magnetosonic modes and not due to the parametric decay instability. Spectra in the neighboring modestly super-Alfvénic intervals are similar.

    « less
  4. Abstract

    We report on a search for electron antineutrinos (ν¯e) from astrophysical sources in the neutrino energy range 8.3–30.8 MeV with the KamLAND detector. In an exposure of 6.72 kton-year of the liquid scintillator, we observe 18 candidate events via the inverse beta decay reaction. Although there is a large background uncertainty from neutral current atmospheric neutrino interactions, we find no significant excess over background model predictions. Assuming several supernova relic neutrino spectra, we give upper flux limits of 60–110 cm−2s−1(90% confidence level, CL) in the analysis range and present a model-independent flux. We also set limits on the annihilation rates for light dark matter pairs to neutrino pairs. These data improve on the upper probability limit of8B solar neutrinos converting intoν¯e,Pνeν¯e<3.5×105(90% CL) assuming an undistortedν¯eshape. This corresponds to a solarν¯eflux of 60 cm−2s−1(90% CL) in the analysis energy range.

  5. Abstract

    Measuring the escape velocity of the Milky Way is critical in obtaining the mass of the Milky Way, understanding the dark matter velocity distribution, and building the dark matter density profile. In Necib & Lin, we introduced a strategy to robustly measure the escape velocity. Our approach takes into account the presence of kinematic substructures by modeling the tail of the stellar distribution with multiple components, including the stellar halo and the debris flow called the Gaia Sausage (Enceladus). In doing so, we can test the robustness of the escape velocity measurement for different definitions of the “tail” of the velocity distribution and the consistency of the data with different underlying models. In this paper, we apply this method to the Gaia eDR3 data release and find that a model with two components is preferred, although results from a single-component fit are also consistent. Based on a fit to retrograde data with two bound components to account for the relaxed halo and the Gaia Sausage, we find the escape velocity of the Milky Way at the solar position to bevesc=4458+25km s−1. A fit with a single component to the same data givesvesc=47212+17km s−1.more »Assuming a Navarro−Frenck−White dark matter profile, we find a Milky Way concentration ofc200=197+11and a mass ofM200=4.60.8+1.5×1011M, which is considerably lighter than previous measurements.

    « less