skip to main content


Title: Spectroscopic Analysis of Milky Way Outer Halo Satellites: Aquarius II and Boötes II
Abstract

In this paper, we present a chemical and kinematic analysis of two ultrafaint dwarf galaxies (UFDs), Aquarius II (Aqu II) and Boötes II (Boo II), using Magellan/IMACS spectroscopy. We present the largest sample of member stars for Boo II (12), and the largest sample of red giant branch members with metallicity measurements for Aqu II (eight). In both UFDs, over 80% of targets selected based on Gaia proper motions turned out to be spectroscopic members. In order to maximize the accuracy of stellar kinematic measurements, we remove the identified binary stars and RR Lyrae variables. For Aqu II, we measure a systemic velocity of −65.3 ± 1.8 km s−1and a metallicity of [Fe/H] =2.570.17+0.17. When compared with previous measurements, these values display a ∼6 km s−1difference in radial velocity and a decrease of 0.27 dex in metallicity. Similarly for Boo II, we measure a systemic velocity of130.41.1+1.4km s−1, more than 10 km s−1different from the literature, a metallicity almost 1 dex smaller at [Fe/H] =2.710.10+0.11, and a velocity dispersion 3 times smaller atσvhel=2.91.2+1.6km s−1. Additionally, we derive systemic proper-motion parameters and model the orbits of both UFDs. Finally, we highlight the extremely dark-matter-dominated nature of Aqu II and compute the J-factor for both galaxies to aid searches of dark matter annihilation. Despite the small size and close proximity of Boo II, it is an intermediate target for the indirect detection of dark matter annihilation due to its low-velocity dispersion and corresponding low dark matter density.

 
more » « less
Award ID(s):
1813881
NSF-PAR ID:
10475452
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Astronomical Society Journals
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
950
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
167
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (R∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion ofσrv=2.50.8+1.3km s−1, which results in a dynamical mass ofM1/2(rh)=84+12×105Mand a mass-to-light ratio ofM/LV=440250+650M/L. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L> 80M/L). However, we do not resolve a metallicity dispersion (σ[Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in line with its orbital parameters. Intriguingly, Grus I has among the lowest central densities (ρ1/23.52.1+5.7×107Mkpc−3) of the UFDs that are not known to be tidally disrupting. Models of the formation and evolution of UFDs will need to explain the diversity of these central densities, in addition to any diversity in the outer regions of these relic galaxies.

     
    more » « less
  2. Abstract

    We present a spectroscopic analysis of Eridanus IV (Eri IV) and Centaurus I (Cen I), two ultrafaint dwarf galaxies of the Milky Way. Using IMACS/Magellan spectroscopy, we identify 28 member stars of Eri IV and 34 member stars of Cen I. For Eri IV, we measure a systemic velocity ofvsys=31.51.2+1.3kms1, and velocity dispersionσv=6.10.9+1.2kms1. Additionally, we measure the metallicities of 16 member stars of Eri IV. We find a metallicity of[Fe/H]=2.870.07+0.08, and resolve a dispersion ofσ[Fe/H]=0.20 ± 0.09. The mean metallicity is marginally lower than all other known ultrafaint dwarf galaxies, making it one of the most metal-poor galaxies discovered thus far. Eri IV also has a somewhat unusual right-skewed metallicity distribution. For Cen I, we find a velocityvsys= 44.9 ± 0.8 km s−1, and velocity dispersionσv=4.20.5+0.6kms1. We measure the metallicities of 27 member stars of Cen I, and find a mean metallicity [Fe/H] = −2.57 ± 0.08, and metallicity dispersionσ[Fe/H]=0.380.05+0.07. We calculate the systemic proper motion, orbit, and the astrophysical J-factor for each system, the latter of which indicates that Eri IV is a good target for indirect dark matter detection. We also find no strong evidence for tidal stripping of Cen I or Eri IV. Overall, our measurements confirm that Eri IV and Cen I are dark-matter-dominated galaxies with properties largely consistent with other known ultrafaint dwarf galaxies. The low metallicity, right-skewed metallicity distribution, and high J-factor make Eri IV an especially interesting candidate for further follow-up.

     
    more » « less
  3. Abstract

    Measuring the escape velocity of the Milky Way is critical in obtaining the mass of the Milky Way, understanding the dark matter velocity distribution, and building the dark matter density profile. In Necib & Lin, we introduced a strategy to robustly measure the escape velocity. Our approach takes into account the presence of kinematic substructures by modeling the tail of the stellar distribution with multiple components, including the stellar halo and the debris flow called the Gaia Sausage (Enceladus). In doing so, we can test the robustness of the escape velocity measurement for different definitions of the “tail” of the velocity distribution and the consistency of the data with different underlying models. In this paper, we apply this method to the Gaia eDR3 data release and find that a model with two components is preferred, although results from a single-component fit are also consistent. Based on a fit to retrograde data with two bound components to account for the relaxed halo and the Gaia Sausage, we find the escape velocity of the Milky Way at the solar position to bevesc=4458+25km s−1. A fit with a single component to the same data givesvesc=47212+17km s−1. Assuming a Navarro−Frenck−White dark matter profile, we find a Milky Way concentration ofc200=197+11and a mass ofM200=4.60.8+1.5×1011M, which is considerably lighter than previous measurements.

     
    more » « less
  4. Abstract

    We confirm the planetary nature of TOI-5344 b as a transiting giant exoplanet around an M0-dwarf star. TOI-5344 b was discovered with the Transiting Exoplanet Survey Satellite photometry and confirmed with ground-based photometry (the Red Buttes Observatory 0.6 m telescope), radial velocity (the Habitable-zone Planet Finder), and speckle imaging (the NN-Explore Exoplanet Stellar Speckle Imager). TOI-5344 b is a Saturn-like giant planet (ρ= 0.800.15+0.17g cm−3) with a planetary radius of 9.7 ± 0.5R(0.87 ± 0.04RJup) and a planetary mass of13518+17M(0.420.06+0.05MJup). It has an orbital period of3.7926220.000010+0.000010days and an orbital eccentricity of0.060.04+0.07. We measure a high metallicity for TOI-5344 of [Fe/H] = 0.48 ± 0.12, where the high metallicity is consistent with expectations from formation through core accretion. We compare the metallicity of the M-dwarf hosts of giant exoplanets to that of M-dwarf hosts of nongiants (≲8R). While the two populations appear to show different metallicity distributions, quantitative tests are prohibited by various sample caveats.

     
    more » « less
  5. A theoretical analysis on crack formation and propagation was performed based on the coupling between the electrochemical process, classical elasticity, and fracture mechanics. The chemical potential of oxygen, thus oxygen partial pressure, at the oxygen electrode-electrolyte interface (μO2OE∣El) was investigated as a function of transport properties, electrolyte thickness and operating conditions (e.g., steam concentration, constant current, and constant voltage). Our analysis shows that: a lower ionic area specific resistance (ASR),riOE,and a higher electronic ASR (reOE) of the oxygen electrode/electrolyte interface are in favor of suppressing crack formation. TheμO2OEEl,thus local pO2, are sensitive towards the operating parameters under galvanostatic or potentiostatic electrolysis. Constant current density electrolysis provides better robustness, especially at a high current density with a high steam content. While constant voltage electrolysis leads to greater variations ofμO2OEEl.Constant current electrolysis, however, is not suitable for an unstable oxygen electrode becauseμO2OEElcan reach a very high value with a gradually increasedriOE.A crack may only occur under certain conditions whenpO2TPB>pcr.

     
    more » « less