Abstract We present a new investigation of the intergalactic medium near reionization using dark gaps in the Lyβforest. With its lower optical depth, Lyβoffers a potentially more sensitive probe to any remaining neutral gas compared to the commonly used Lyαline. We identify dark gaps in the Lyβforest using spectra of 42 QSOs atzem> 5.5, including new data from the XQR-30 VLT Large Programme. Approximately 40% of these QSO spectra exhibit dark gaps longer than 10h−1Mpc atz≃ 5.8. By comparing the results to predictions from simulations, we find that the data are broadly consistent both with models where fluctuations in the Lyαforest are caused solely by ionizing ultraviolet background fluctuations and with models that include large neutral hydrogen patches atz< 6 due to a late end to reionization. Of particular interest is a very long (L= 28h−1Mpc) and dark (τeff≳ 6) gap persisting down toz≃ 5.5 in the Lyβforest of thez= 5.85 QSO PSO J025−11. This gap may support late reionization models with a volume-weighted average neutral hydrogen fraction of 〈xH I〉 ≳ 5% byz= 5.6. Finally, we infer constraints on 〈xH I〉 over 5.5 ≲z≲ 6.0 based on the observed Lyβdark gap length distribution and a conservative relationship between gap length and neutral fraction derived from simulations. We find 〈xH I〉 ≤ 0.05, 0.17, and 0.29 atz≃ 5.55, 5.75, and 5.95, respectively. These constraints are consistent with models where reionization ends significantly later thanz= 6.
more »
« less
Assuming Ionization Equilibrium and the Impact on the Lyα Forest Power Spectrum during the End of Reionization at 8 ≥ z ≥ 5
Abstract We explore how the assumption of ionization equilibrium modulates the modeled intergalactic medium at the end of the hydrogen epoch of reionization using the cosmological radiation hydrodynamicTechnicolor Dawnsimulation. In neutral and partially ionized regions where the metagalactic ultraviolet background is weak, the ionization timescaletion≡ Γ−1exceeds the Hubble time. Assuming photoionization equilibrium in such regions artificially boosts the ionization rate, accelerating reionization. By contrast, the recombination timetrec<tionin photoionized regions, with the result that assuming photoionization equilibrium artificially increases the neutral hydrogen fraction. Using snapshots in the range 8 ≥z≥ 5, we compare the predicted Lyαforest (LAF) flux power spectrum with and without the assumption of ionization equilibrium. Small scales (k> 0.1 rad s km−1) exhibit reduced power from 7 ≤z≤ 5.5 in the ionization equilibrium case, while larger scales are unaffected. This occurs for the same reasons: ionization equilibrium artificially suppresses the neutral fraction in self-shielded gas and boosts ionizations in voids, suppressing small-scale fluctuations in the ionization field. When the volume-averaged neutral fraction drops below 10−4, the signature of nonequilibrium ionizations on the LAF disappears. Comparing with recent observations indicates that these nonequilibrium effects are not yet observable in the LAF flux power spectrum.
more »
« less
- Award ID(s):
- 2006550
- PAR ID:
- 10367765
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 931
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 46
- Size(s):
- Article No. 46
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The cross-correlation between the 21 cm field and the galaxy distribution is a potential probe of the Epoch of Reionization (EoR). The 21 cm signal traces neutral gas in the intergalactic medium and, on large spatial scales, this should be anticorrelated with the high-redshift galaxy distribution, which partly sources and tracks the ionized gas. In the near future, interferometers such as the Hydrogen Epoch of Reionization Array (HERA) are projected to provide extremely sensitive measurements of the 21 cm power spectrum. At the same time, the Nancy Grace Roman Space Telescope (Roman) will produce the most extensive catalog to date of bright galaxies from the EoR. Using seminumeric simulations of reionization, we explore the prospects for measuring the cross-power spectrum between the 21 cm and galaxy fields during the EoR. We forecast a 12σdetection between HERA and Roman, assuming an overlapping survey area of 500 deg2, redshift uncertainties ofσz= 0.01 (as expected for the high-latitude spectroscopic survey of Lyα-emitting galaxies), and an effective Lyαemitter duty cycle offLAE= 0.1. Thus the HERA–Roman cross-power spectrum may be used to help verify 21 cm detections from HERA. We find that the shot-noise in the galaxy distribution is a limiting factor for detection, and so supplemental observations using Roman should prioritize deeper observations, rather than covering a wider field of view. We have made a public GitHub repository containing key parts of the calculation, which accompanies this paper:https://github.com/plaplant/21cm_gal_cross_correlation.more » « less
-
Context.The study of quasar outflows is essential for understanding the connection between active galactic nuclei (AGN) and their host galaxies. We analyzed the VLT/UVES spectrum of quasar SDSS J0932+0840 and identified several narrow and broad outflow components in absorption, with multiple ionization species including Fe II. This places it among the rare class of outflows known as iron low-ionization broad absorption line outflows (FeLoBALs). Aims.We studied one of the outflow components to determine its physical characteristics by determining the total hydrogen column density, the ionization parameter, and the hydrogen number density. Through these parameters, we obtained the distance of the outflow from the central source, its mass outflow rate, and its kinetic luminosity, and we constrained the contribution of the outflow to the AGN feedback. Methods.We obtained the ionic column densities from the absorption troughs in the spectrum and used photoionization modeling to extract the physical parameters of the outflow, including the total hydrogen column density and ionization parameter. The relative population of the observed excited states of Fe IIwas used to model the hydrogen number density of the outflow. Results.We used the Fe IIexcited states to model the electron number density (ne) and hydrogen number density (nH) independently and obtainedne≃ 103.4cm−3andnH≃ 104.8cm−3. Our analysis of the physical structure of the cloud shows that these two results are consistent with each other. This places the outflow system at a distance of 0.7−0.4+0.9kpc from the central source, with a mass flow rate (Ṁ) of 43−26+65 M⊙yr−1and a kinetic luminosity (Ėk) of 0.7−0.4+1.1× 1043erg s−1. This is 0.5−0.3+0.7× 10−4of the Eddington luminosity (LEdd) of the quasar, and we thus conclude that this outflow is not powerful enough to contribute significantly toward AGN feedback.more » « less
-
Abstract We analyze the cool gas in and around 14 nearby galaxies (atz< 0.1) mapped with the Sloan Digital Sky Survey IV MaNGA survey by measuring absorption lines produced by gas in spectra of background quasars/active galactic nuclei at impact parameters of 0–25 effective radii from the galactic centers. Using Hubble Space Telescope/Cosmic Origins Spectrograph, we detect absorption at the galactic redshift and measure or constrain column densities of neutral (Hi, Ni, Oi, and Ari), low-ionization (Siii, Sii, Cii, Nii, and Feii), and high-ionization (Siiii, Feiii, Nv, and Ovi) species for 11 galaxies. We derive the ionization parameter and ionization-corrected metallicity usingcloudyphotoionization models. The Hicolumn density ranges from ∼1013to ∼1020cm−2and decreases with impact parameter forr≳Re. Galaxies with higher stellar mass have weaker Hiabsorption. Comparing absorption velocities with MaNGA radial velocity maps of ionized gas line emissions in galactic disks, we find that the neutral gas seen in absorption corotates with the disk out to ∼10Re. Sight lines with lower elevation angles show lower metallicities, consistent with the metallicity gradient in the disk derived from MaNGA maps. Higher-elevation angle sight lines show higher ionization, lower Hicolumn density, supersolar metallicity, and velocities consistent with the direction of galactic outflow. Our data offer the first detailed comparisons of circumgalactic medium (CGM) properties (kinematics and metallicity) with extrapolations of detailed galaxy maps from integral field spectroscopy; similar studies for larger samples are needed to more fully understand how galaxies interact with their CGM.more » « less
-
The redshifted 21 cm signal from the Epoch of Reionization (EoR) directly probes the ionization and thermal states of the intergalactic medium during that period. In particular, the distribution of the ionized regions around the radiating sources during EoR introduces scale-dependent features in the spherically averaged EoR 21 cm signal power spectrum. Aims. The goal is to study these scale-dependent features at different stages of reionization using numerical simulations and to build a source model-independent framework to probe the properties of the intergalactic medium using EoR 21 cm signal power spectrum measurements. Methods. Under the assumption of high spin temperature, we modeled the redshift evolution of the ratio of the EoR 21 cm brightness temperature power spectrum to the corresponding density power spectrum using an ansatz consisting of a set of redshift and scale-independent parameters. This set of eight parameters probes the redshift evolution of the average ionization fraction and the quantities related to the morphology of the ionized regions. Results. We tested this ansatz on different reionization scenarios generated using different simulation algorithms and found that it is able to recover the redshift evolution of the average neutral fraction within an absolute deviation ≲0.1. Conclusions. Our framework allows us to interpret 21 cm signal power spectra in terms of parameters related to the state of the IGM. This source model-independent framework is able to efficiently constrain reionization scenarios using multi-redshift power spectrum measurements with ongoing and future radio telescopes such as LOFAR, MWA, HERA, and SKA. This will add independent information regarding the EoR IGM properties.more » « less
An official website of the United States government
