Abstract Transient receptor potential vanilloid (TRPV) channels play various important roles in human physiology. As membrane proteins, these channels are modulated by their endogenous lipid environment as the recent wealth of structural studies has revealed functional and structural lipid binding sites. Additionally, it has been shown that exogenous ligands can exchange with some of these lipids to alter channel gating. Here, we used molecular dynamics simulations to examine how one member of the TRPV family, TRPV2, interacts with endogenous lipids and the pharmacological modulator cannabidiol (CBD). By computationally reconstituting TRPV2 into a typical plasma membrane environment, which includes phospholipids, cholesterol, and phosphatidylinositol (PIP) in the inner leaflet, we showed that most of the interacting surface lipids are phospholipids without strong specificity for headgroup types. Intriguingly, we observed that the C‐terminal membrane proximal region of the channel binds preferentially to PIP lipids. We also modelled two structural lipids in the simulation: one in the vanilloid pocket and the other in the voltage sensor‐like domain (VSLD) pocket. The simulation shows that the VSLD lipid dampens the fluctuation of the VSLD residues, while the vanilloid lipid exhibits heterogeneity both in its binding pose and in its influence on protein dynamics. Addition of CBD to our simulation system led to an open selectivity filter and a structural rearrangement that includes a clockwise rotation of the ankyrin repeat domains, TRP helix, and VSLD. Together, these results reveal the interplay between endogenous lipids and an exogenous ligand and their effect on TRPV2 stability and channel gating. 
                        more » 
                        « less   
                    
                            
                            Electromechanics of lipid-modulated gating of potassium channels
                        
                    
    
            Experimental studies reveal that the anionic lipid phosphatidic acid (POPA), non-phospholipid cholesterol, and cationic lipid DOTAP inhibit the gating of voltage-sensitive potassium (Kv) channels. Here, we develop a continuum electromechanical model to investigate the interaction of these lipids with the ion channel. Our model suggests that: (i) POPA lipids may restrict the vertical motion of the voltage-sensor domain through direct electrostatic interactions; (ii) cholesterol may oppose the radial motion of the pore domain of the channel by increasing the mechanical rigidity of the membrane; and (iii) DOTAP can reduce the effect of electrostatic forces by regulating the dielectric constant at the channel–lipid interface. The electromechanical model predictions for the three lipid types match well with the experimental observations and provide mechanistic insights into lipid-dependent gating of Kv channels. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1931084
- PAR ID:
- 10367874
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Mathematics and Mechanics of Solids
- Volume:
- 27
- Issue:
- 7
- ISSN:
- 1081-2865
- Format(s):
- Medium: X Size: p. 1284-1300
- Size(s):
- p. 1284-1300
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Lysenin, a pore forming toxin (PFT) extracted from Eisenia fetida, inserts voltage-regulated channels into artificial lipid membranes containing sphingomyelin. The voltage-induced gating leads to a strong static hysteresis in conductance, which endows lysenin with molecular memory capabilities. To explain this history-dependent behavior, we hypothesized a gating mechanism that implies the movement of a voltage domain sensor from an aqueous environment into the hydrophobic core of the membrane under the influence of an external electric field. In this work, we employed electrophysiology approaches to investigate the effects of ionic screening elicited by metal cations on the voltage-induced gating and hysteresis in conductance of lysenin channels exposed to oscillatory voltage stimuli. Our experimental data show that screening of the voltage sensor domain strongly affects the voltage regulation only during inactivation (channel closing). In contrast, channel reactivation (reopening) presents a more stable, almost invariant voltage dependency. Additionally, in the presence of anionic Adenosine 5′-triphosphate (ATP), which binds at a different site in the channel’s structure and occludes the conducting pathway, both inactivation and reactivation pathways are significantly affected. Therefore, the movement of the voltage domain sensor into a physically different environment that precludes electrostatically bound ions may be an integral part of the gating mechanism.more » « less
- 
            Presented herein is the first report on dipolar Janus liposomes–liposomes that contain opposite surface charges decorating the two hemispheres of the same colloidal body. Such heterogeneous organization of surface charge is achieved through cholesterol-modulated lipid phase separation, which sorts anionic/cationic lipids into coexisting liquid-ordered/liquid-disordered domains. We present optimized experimental conditions to produce these liposomes in high yields, based on the gel-assisted hydration of ternary lipid systems consisting of cholesterol, 1,2-dipalmitoyl- sn-glycero -3-phosphocholine, and 1,2-dioleoyl- sn-glycero -3-phosphocholine. The size/charge distribution and domain configuration of these liposomes are characterized in detail by confocal fluorescence microscopy, nanosphere binding and zeta potential measurements. Using confocal fluorescence microscopy, we also follow the electrokinetic motion as well as the electrostatic self-assembly of these new dipolar Janus particles.more » « less
- 
            Distinct lipid bilayer compositions have general and protein-specific effects on K+ channel functionnull (Ed.)It has become increasingly apparent that the lipid composition of cell membranes affects the function of transmembrane proteins such as ion channels. Here, we leverage the structural and functional diversity of small viral K+ channels to systematically examine the impact of bilayer composition on the pore module of single K+ channels. In vitro–synthesized channels were reconstituted into phosphatidylcholine bilayers ± cholesterol or anionic phospholipids (aPLs). Single-channel recordings revealed that a saturating concentration of 30% cholesterol had only minor and protein-specific effects on unitary conductance and gating. This indicates that channels have effective strategies for avoiding structural impacts of hydrophobic mismatches between proteins and the surrounding bilayer. In all seven channels tested, aPLs augmented the unitary conductance, suggesting that this is a general effect of negatively charged phospholipids on channel function. For one channel, we determined an effective half-maximal concentration of 15% phosphatidylserine, a value within the physiological range of aPL concentrations. The different sensitivity of two channel proteins to aPLs could be explained by the presence/absence of cationic amino acids at the interface between the lipid headgroups and the transmembrane domains. aPLs also affected gating in some channels, indicating that conductance and gating are uncoupled phenomena and that the impact of aPLs on gating is protein specific. In two channels, the latter can be explained by the altered orientation of the pore-lining transmembrane helix that prevents flipping of a phenylalanine side chain into the ion permeation pathway for long channel closings. Experiments with asymmetrical bilayers showed that this effect is leaflet specific and most effective in the inner leaflet, in which aPLs are normally present in plasma membranes. The data underscore a general positive effect of aPLs on the conductance of K+ channels and a potential interaction of their negative headgroup with cationic amino acids in their vicinity.more » « less
- 
            Many voltage-gated potassium (Kv) channels display a time-dependent phenomenon called C-type inactivation, whereby prolonged activation by voltage leads to the inhibition of ionic conduction, a process that involves a conformational change at the selectivity filter toward a non-conductive state. Recently, a high-resolution structure of a strongly inactivated triple-mutant channel kv1.2-kv2.1-3m revealed a novel conformation of the selectivity filter that is dilated at its outer end, distinct from the well-characterized conductive state. While the experimental structure was interpreted as the elusive non-conductive state, our molecular dynamics simulations and electrophysiological measurements show that the dilated filter of kv1.2-kv2.1-3m is conductive and, as such, cannot completely account for the inactivation of the channel observed in the structural experiments. The simulation shows that an additional conformational change, implicating isoleucine residues at position 398 along the pore lining segment S6, is required to effectively block ion conduction. The I398 residues from the four subunits act as a state-dependent hydrophobic gate located immediately beneath the selectivity filter. These observations are corroborated by electrophysiological experiments showing that ion permeation can be resumed in the kv1.2-kv2.1-3m channel when I398 is mutated to an asparagine—a mutation that does not abolish C-type inactivation since digitoxin (AgTxII) fails to block the ionic permeation of kv1.2-kv2.1-3m_I398N. As a critical piece of the C-type inactivation machinery, this structural feature is the potential target of a broad class of quaternary ammonium (QA) blockers and negatively charged activators thus opening new research directions toward the development of drugs that specifically modulate gating states of Kv channels.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
