Ultrahigh temperature ceramics (UHTCs) have melting points above 3000°C and outstanding strength at high temperatures, thus making them apposite structural materials for high‐temperature applications. Di‐borides, nitride, and carbide compounds—processed via various techniques—have been extensively studied and used in the manufacture of UHTCs. Current analytical models, based on our current but incomplete understanding of the theory, are unable to produce a priori predictions of mechanical properties of UHTCs based on their mixture designs and processing parameters. As a result, researchers have to rely on experiments—which are often costly and time‐consuming—to understand composition–structure–performance links in UHTCs. This study employs machine learning (ML) models (i.e., random forest and artificial neural network models) to predict Young's modulus, flexural strength, and fracture toughness of UHTCs in relation to a wide range of mixture designs, processing parameters, and testing conditions. Outcomes demonstrate that adequately trained ML models can yield reliable predictions, a priori, of the three aforesaid mechanical properties. The prediction performance on Young's modulus is superior to flexural strength and fracture toughness. Next, the ML model with the best prediction performance is utilized to evaluate and rank the impacts of input variables on Young's modulus. Finally, on the basis of such classification of consequential and inconsequential input variables, this study develops an easy‐to‐use, closed‐form analytical model to predict Young's modulus of UHTCs. Overall, this study highlights the ability of data‐driven numerical models to complement, or even replace, time‐consuming experiments, thereby accelerating the development of UHTCs.
Alkali‐activated mortar (AAM) is an emerging eco‐friendly construction material, which can complement ordinary Portland cement (OPC) mortars. Prediction of properties of AAMs—albeit much needed to complement experiments—is difficult, owing to substantive batch‐to‐batch variations in physicochemical properties of their precursors (i.e., aluminosilicate and activator solution). In this study, a machine learning (ML) model is employed; and it is shown that the model—once trained and optimized—can reliably predict compressive strength of AAMs solely from their initial physicochemical attributes. Prediction performance of the model improves when multiple compositional descriptors of the aluminosilicate are combined into a singular, composite chemostructural descriptor (i.e.,
- PAR ID:
- 10367901
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of the American Ceramic Society
- Volume:
- 105
- Issue:
- 6
- ISSN:
- 0002-7820
- Page Range / eLocation ID:
- p. 4414-4425
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Limestone calcined clay cement (LC3) is a sustainable alternative to ordinary Portland cement, capable of reducing the binder’s carbon footprint by 40% while satisfying all key performance metrics. The inherent compositional heterogeneity in select components of LC3, combined with their convoluted chemical interactions, poses challenges to conventional analytical models when predicting mechanical properties. Although some studies have employed machine learning (ML) to predict the mechanical properties of LC3, many have overlooked the pivotal role of feature selection. Proper feature selection not only refines and simplifies the structure of ML models but also enhances these models’ prediction performance and interpretability. This research harnesses the power of the random forest (RF) model to predict the compressive strength of LC3. Three feature reduction methods—Pearson correlation, SHapley Additive exPlanations, and variable importance—are employed to analyze the influence of LC3 components and mixture design on compressive strength. Practical guidelines for utilizing these methods on cementitious materials are elucidated. Through the rigorous screening of insignificant variables from the database, the RF model conserves computational resources while also producing high-fidelity predictions. Additionally, a feature enhancement method is utilized, consolidating numerous input variables into a singular feature while feeding the RF model with richer information, resulting in a substantial improvement in prediction accuracy. Overall, this study provides a novel pathway to apply ML to LC3, emphasizing the need to tailor ML models to cement chemistry rather than employing them generically.
-
Calcium aluminate cement (CAC) has been explored as a sustainable alternative to Portland cement, the most widely used type of cement. However, the hydration reaction and mechanical properties of CAC can be influenced by various factors such as water content, Li2CO3 content, and age. Due to the complex interactions between the precursors in CAC, traditional analytical models have struggled to predict CAC binders’ compressive strength and porosity accurately. To overcome this limitation, this study utilizes machine learning (ML) to predict the properties of CAC. The study begins by using thermodynamic simulations to determine the phase assemblages of CAC at different ages. The XGBoost model is then used to predict the compressive strength, porosity, and hydration products of CAC based on the mixture design and age. The XGBoost model is also used to evaluate the influence of input parameters on the compressive strength and porosity of CAC. Based on the results of this analysis, a closed-form analytical model is developed to predict the compressive strength and porosity of CAC accurately. Overall, the study demonstrates that ML can be effectively used to predict the properties of CAC binders, providing a valuable tool for researchers and practitioners in the field of cement science.more » « less
-
The transverse strength of fiber-reinforced composites is a matrix-dominated property whose accurate prediction iscrucial to designing and optimizing efficient, lightweight structures. State-of-the-art analytical models for compositestrength predictions do not account for fiber distribution, orientation, and curing-induced residual stress that greatlyinfluence damage initiation and failure propagation at the microscale. This work presents a novel methodology to develop an analytical solution for transverse composite strength based on computational micromechanics that enables the modeling of stress concentration due to representative volume elements (RVE) morphology and residual stress. Finiteelement simulations are used to model statistical samples of composite microstructures, generate stress-strain curves,and correlate statistical descriptors of the microscale to stress concentration factors to predict transverse strength as a function of fiber volume fraction. Tensile tests of thin plies validated this approach for carbon- and glass-reinforced composites showing promise to obtain a generalized analytical model for transverse composite strength prediction.more » « less
-
Abstract Carbonaceous (e.g., limestone) and aluminosilicate (e.g., calcined clay) mineral additives are routinely used to partially replace ordinary portland cement in concrete to alleviate its energy impact and carbon footprint. These mineral additives—depending on their physicochemical characteristics—alter the hydration behavior of cement; which, in turn, affects the evolution of microstructure of concrete, as well as the development of its properties (e.g., compressive strength). Numerical, reaction-kinetics models—e.g., phase boundary nucleation-and-growth models; which are based partly on theoretically-derived kinetic mechanisms, and partly on assumptions—are unable to produce a priori prediction of hydration kinetics of cement; especially in multicomponent systems, wherein chemical interactions among cement, water, and mineral additives occur concurrently. This paper introduces a machine learning-based methodology to enable prompt and high-fidelity prediction of time-dependent hydration kinetics of cement, both in plain and multicomponent (e.g., binary; and ternary) systems, using the system’s physicochemical characteristics as inputs. Based on a database comprising hydration kinetics profiles of 235 unique systems—encompassing 7 synthetic cements and three mineral additives with disparate physicochemical attributes—a random forests (RF) model was rigorously trained to establish the underlying composition-reactivity correlations. This training was subsequently leveraged by the RF model: to predict time-dependent hydration kinetics of cement in new, multicomponent systems; and to formulate optimal mixture designs that satisfy user-imposed kinetics criteria.