skip to main content


Title: 0–5 Hz deterministic 3-D ground motion simulations for the 2014 La Habra, California, Earthquake
SUMMARY

We have simulated 0–5 Hz deterministic wave propagation for a suite of 17 models of the 2014 Mw 5.1 La Habra, CA, earthquake with the Southern California Earthquake Center Community Velocity Model Version S4.26-M01 using a finite-fault source. Strong motion data at 259 sites within a 148 km × 140 km area are used to validate our simulations. Our simulations quantify the effects of statistical distributions of small-scale crustal heterogeneities (SSHs), frequency-dependent attenuation Q(f), surface topography and near-surface low-velocity material (via a 1-D approximation) on the resulting ground motion synthetics. The shear wave quality factor QS(f) is parametrized as QS, 0 and QS, 0fγ for frequencies less than and higher than 1 Hz, respectively. We find the most favourable fit to data for models using ratios of QS, 0 to shear wave velocity VS of 0.075–1.0 and γ values less than 0.6, with the best-fitting amplitude drop-off for the higher frequencies obtained for γ values of 0.2–0.4. Models including topography and a realistic near-surface weathering layer tend to increase peak velocities at mountain peaks and ridges, with a corresponding decrease behind the peaks and ridges in the direction of wave propagation. We find a clear negative correlation between the effects on peak ground velocity amplification and duration lengthening, suggesting that topography redistributes seismic energy from the large-amplitude first arrivals to the adjacent coda waves. A weathering layer with realistic near-surface low velocities is found to enhance the amplification at mountain peaks and ridges, and may partly explain the underprediction of the effects of topography on ground motions found in models. Our models including topography tend to improve the fit to data, as compared to models with a flat free surface, while our distributions of SSHs with constraints from borehole data fail to significantly improve the fit. Accuracy of the velocity model, particularly the near-surface low velocities, as well as the source description, controls the resolution with which the anelastic attenuation can be determined. Our results demonstrate that it is feasible to use fully deterministic physics-based simulations to estimate ground motions for seismic hazard analysis up to 5 Hz. Here, the effects of, and trade-offs with, near-surface low-velocity material, topography, SSHs and Q(f) become increasingly important as frequencies increase towards 5 Hz, and should be included in the calculations. Future improvement in community velocity models, wider access to computational resources, more efficient numerical codes and guidance from this study are bound to further constrain the ground motion models, leading to more accurate seismic hazard analysis.

 
more » « less
Award ID(s):
1664203
NSF-PAR ID:
10367922
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
230
Issue:
3
ISSN:
0956-540X
Format(s):
Medium: X Size: p. 2162-2182
Size(s):
["p. 2162-2182"]
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    The near-surface seismic structure (to a depth of about 1000 m), particularly the shear wave velocity (VS), can strongly affect the propagation of seismic waves and, therefore, must be accurately calibrated for ground motion simulations and seismic hazard assessment. The VS of the top (<300 m) crust is often well characterized from borehole studies, geotechnical measurements, and water and oil wells, while the velocities of the material deeper than about 1000 m are typically determined by tomography studies. However, in depth ranges lacking information on shallow lithological stratification, typically rock sites outside the sedimentary basins, the material parameters between these two regions are typically poorly characterized due to resolution limits of seismic tomography. When the alluded geological constraints are not available, models, such as the Southern California Earthquake Center (SCEC) Community Velocity Models (CVMs), default to regional tomographic estimates that do not resolve the uppermost VS values, and therefore deliver unrealistically high shallow VS estimates. The SCEC Unified Community Velocity Model (UCVM) software includes a method to incorporate the near-surface earth structure by applying a generic overlay based on measurements of time-averaged VS in top 30 m (VS30) to taper the upper part of the model to merge with tomography at a depth of 350 m, which can be applied to any of the velocity models accessible through UCVM. However, our 3-D simulations of the 2014 Mw 5.1 La Habra earthquake in the Los Angeles area using the CVM-S4.26.M01 model significantly underpredict low-frequency (<1 Hz) ground motions at sites where the material properties in the top 350 m are significantly modified by the generic overlay (‘taper’). On the other hand, extending the VS30-based taper of the shallow velocities down to a depth of about 1000 m improves the fit between our synthetics and seismic data at those sites, without compromising the fit at well-constrained sites. We explore various tapering depths, demonstrating increasing amplification as the tapering depth increases, and the model with 1000 m tapering depth yields overall favourable results. Effects of varying anelastic attenuation are small compared to effects of velocity tapering and do not significantly bias the estimated tapering depth. Although a uniform tapering depth is adopted in the models, we observe some spatial variabilities that may further improve our method.

     
    more » « less
  2. Accurately predicting the seismic wavefield is important for physics-based earthquake hazard studies and is dependent on an accurate source model, a good model of the subsurface geology, and the full physics of wave propagation. Here, we conduct numerical experiments to investigate the effect of different representations of the Southern California Earthquake Center and Harvard community velocity models on seismic waveform predictions in the vicinity of the San Andreas fault in Salton Trough. We test general preconceptions about the importance of topography, near-surface geotechnical layering, and anelastic attenuation up to a maximum frequency of 0.5 Hz. For the Southern California Earthquake Center model developed without topography, we implement 1D and linear model extensions that preserve the geologic structure and a pull-up approach that adapts the original model to topographic variations and distorts the subsurface. The Harvard model includes an elevation model, so we test the squashed topography representation, which flattens it. For both community models, we modify the top 350 m by partially applying the Ely geotechnical layer using a minimum shear wave velocity of 600 m/s and incorporate an Olsen attenuation model using a ratio of 0.05. We evaluate the resulting 24 model representations using the classical waveform misfit and five moderate-magnitude earthquakes. Only the inclusion of attenuation consistently improves the wavefield predictions. It becomes more impactful at higher frequencies, where it significantly improves the performance levels of the crude 1D and linear extension models close to that of the original version. The pull-up topography representation also enhances the waveform prediction ability of the original model. Squashing the topography of the elevation-referenced Harvard model produces better seismogram fits, suggesting that seismic imagers construct community tomographic models without topography to avoid issues related to missing model parameters near the free surface or discrepancies with a different elevation model. Although full implementation of the Ely geotechnical layer that would permit shear wave velocities as low as 90 m/s proves computationally expensive, our partial implementation provides slightly better results in some cases. Our results can serve as recommendations for implementing these community models for future validation or optimization studies. 
    more » « less
  3. ABSTRACT We explore the response of ground motions to topography during large crustal fault earthquakes by simulating several magnitude 6.5–7.0 rupture scenarios on the Seattle fault, Washington State. Kinematic simulations are run using a 3D spectral element code and a detailed seismic velocity model for the Puget Sound region. This model includes realistic surface topography and a near-surface low-velocity layer; a mesh spacing of ∼30 m at the surface allows modeling of ground motions up to 3 Hz. We simulate 20 earthquake scenarios using different slip distributions and hypocenter locations on a planar fault surface. Results indicate that average ground motions in simulations with and without topography are similar. However, shaking amplification is common at topographic highs, and more than a quarter of all sites experience short-period (≤2 s) ground-motion amplification greater than 25%–35%, compared with models without topography. Comparisons of peak ground velocity at the top and bottom of topographic features demonstrate that amplification is sensitive to period, with the greatest amplifications typically manifesting near a topographic feature’s estimated resonance frequency and along azimuths perpendicular to its primary axis of elongation. However, interevent variability in topographic response can be significant, particularly at shorter periods (<1 s). We do not observe a clear relationship between source centroid-to-site azimuths and the strength of topographic amplification. Overall, our results suggest that although topographic resonance does influence the average ground motions, other processes (e.g., localized focusing and scattering) also play a significant role in determining topographic response. However, the amount of consistent, significant amplification due to topography suggests that topographic effects should likely be considered in some capacity during seismic hazard studies. 
    more » « less
  4. Abstract

    Understanding and modeling variability of ground motion is essential for building accurate and precise ground motion prediction equations, which can net site‐specific characterization and reduced hazard levels. Here, we explore the spatial variability in peak ground velocity (PGV) at Sage Brush Flats along the San Jacinto Fault in Southern California. We use data from a dense array (0.6 × 0.6 km2, 1,108 geophones, station spacings 10–30 m) deployed in 2014 for ~1 month. These data offer an opportunity to study small‐scale variability in this region. We examine 38 earthquakes (2 ≤ ML ≤ 4.2) within 200 km of the array. Fault strands and a small basin impact the ground motions, producing PGV variations up to 22% of the mean and a 40% reduction inPandSwave near‐surface velocities. We find along‐fault rupture directivity, source, and path effects can increase PGVs by 167%. Surface PGV measurements exceed the colocated borehole station (depth at 148 m) PGV by factors of 3–10, confirming the impact on PGV from near‐surface fault structures, basins, topography, and amplifications from soft sediments. Consistently, we find high PGVs within the basin structure. A pair of colocated GaML2.6 events produce repeatable PGV values with similar spatial patterns. The average corner frequencies of these two events are 11–16 Hz, and viable measurements of stress drop can differ by 6.45 MPa. Within this small array, the PGV values are variable implying spatial extrapolation of PGV to regions of known faults and basins, even across a small area, should be done with caution.

     
    more » « less
  5. We have conducted three-dimensional (3D) 0–7.5 Hz physics-based wave propagation simulations to model the seismic response of the Long Valley Dam (LVD), which has formed Lake Crowley in Central California, to estimate peak ground motions and settlement of the dam expected during maximum credible earthquake (MCE) scenarios on the nearby Hilton Creek Fault (HCF). We calibrated the velocity structure, anelastic attenuation model, and the overall elastic properties of the dam via linear simulations of a Mw3.7 event as well as the Mw6.2 Chalfant Valley earthquake of 1986, constrained by observed ground motions on and nearby the LVD. The Statewide California Earthquake Center (SCEC) Community Velocity Model CVM-S4.26.M01 superimposed with a geotechnical layer using [Formula: see text] information tapered from the surface to a 700-m depth was used in the simulations. We found optimal fit of simulated and observed ground motions at the LVD using frequency-independent attenuation of [Formula: see text] ([Formula: see text] in m/s). Using the calibrated model, we simulated 3D nonlinear ground motions at the LVD for Mw6.6 rupture scenarios on the HCF using an Iwan-type, multi-yield-surface technique. We use a two-step method where the computationally expensive nonlinear calculations were carried out in a small domain with the plane wave excitation along the bottom boundary obtained from a full-domain 3D linear finite-fault simulation. Our nonlinear MCE simulation results show that peak ground velocities (PGVs) and peak ground accelerations (PGAs) as high as 72 cm/s and 0.55 g, respectively, can be expected at the crest of the LVD. Compared with linear ground motion simulation results, our results show that Iwan nonlinear damping reduces PGAs on the dam crest by up to a factor of 8 and increasingly depletes the high-frequency content of the waves toward the dam crest. We find horizontal relative displacements of the material inside the dam of up to [Formula: see text] and up to [Formula: see text] of vertical subsidence, equivalent to 1% of the dam height.

     
    more » « less