skip to main content

Title: 0–5 Hz deterministic 3-D ground motion simulations for the 2014 La Habra, California, Earthquake
SUMMARY

We have simulated 0–5 Hz deterministic wave propagation for a suite of 17 models of the 2014 Mw 5.1 La Habra, CA, earthquake with the Southern California Earthquake Center Community Velocity Model Version S4.26-M01 using a finite-fault source. Strong motion data at 259 sites within a 148 km × 140 km area are used to validate our simulations. Our simulations quantify the effects of statistical distributions of small-scale crustal heterogeneities (SSHs), frequency-dependent attenuation Q(f), surface topography and near-surface low-velocity material (via a 1-D approximation) on the resulting ground motion synthetics. The shear wave quality factor QS(f) is parametrized as QS, 0 and QS, 0fγ for frequencies less than and higher than 1 Hz, respectively. We find the most favourable fit to data for models using ratios of QS, 0 to shear wave velocity VS of 0.075–1.0 and γ values less than 0.6, with the best-fitting amplitude drop-off for the higher frequencies obtained for γ values of 0.2–0.4. Models including topography and a realistic near-surface weathering layer tend to increase peak velocities at mountain peaks and ridges, with a corresponding decrease behind the peaks and ridges in the direction of wave propagation. We find a clear negative correlation between the effects on peak ground more » velocity amplification and duration lengthening, suggesting that topography redistributes seismic energy from the large-amplitude first arrivals to the adjacent coda waves. A weathering layer with realistic near-surface low velocities is found to enhance the amplification at mountain peaks and ridges, and may partly explain the underprediction of the effects of topography on ground motions found in models. Our models including topography tend to improve the fit to data, as compared to models with a flat free surface, while our distributions of SSHs with constraints from borehole data fail to significantly improve the fit. Accuracy of the velocity model, particularly the near-surface low velocities, as well as the source description, controls the resolution with which the anelastic attenuation can be determined. Our results demonstrate that it is feasible to use fully deterministic physics-based simulations to estimate ground motions for seismic hazard analysis up to 5 Hz. Here, the effects of, and trade-offs with, near-surface low-velocity material, topography, SSHs and Q(f) become increasingly important as frequencies increase towards 5 Hz, and should be included in the calculations. Future improvement in community velocity models, wider access to computational resources, more efficient numerical codes and guidance from this study are bound to further constrain the ground motion models, leading to more accurate seismic hazard analysis.

« less
Authors:
; ;
Publication Date:
NSF-PAR ID:
10367922
Journal Name:
Geophysical Journal International
Volume:
230
Issue:
3
Page Range or eLocation-ID:
p. 2162-2182
ISSN:
0956-540X
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    The near-surface seismic structure (to a depth of about 1000 m), particularly the shear wave velocity (VS), can strongly affect the propagation of seismic waves and, therefore, must be accurately calibrated for ground motion simulations and seismic hazard assessment. The VS of the top (<300 m) crust is often well characterized from borehole studies, geotechnical measurements, and water and oil wells, while the velocities of the material deeper than about 1000 m are typically determined by tomography studies. However, in depth ranges lacking information on shallow lithological stratification, typically rock sites outside the sedimentary basins, the material parameters between these two regions are typically poorly characterized due to resolution limits of seismic tomography. When the alluded geological constraints are not available, models, such as the Southern California Earthquake Center (SCEC) Community Velocity Models (CVMs), default to regional tomographic estimates that do not resolve the uppermost VS values, and therefore deliver unrealistically high shallow VS estimates. The SCEC Unified Community Velocity Model (UCVM) software includes a method to incorporate the near-surface earth structure by applying a generic overlay based on measurements of time-averaged VS in top 30 m (VS30) to taper the upper part of the model to merge with tomography at a depthmore »of 350 m, which can be applied to any of the velocity models accessible through UCVM. However, our 3-D simulations of the 2014 Mw 5.1 La Habra earthquake in the Los Angeles area using the CVM-S4.26.M01 model significantly underpredict low-frequency (<1 Hz) ground motions at sites where the material properties in the top 350 m are significantly modified by the generic overlay (‘taper’). On the other hand, extending the VS30-based taper of the shallow velocities down to a depth of about 1000 m improves the fit between our synthetics and seismic data at those sites, without compromising the fit at well-constrained sites. We explore various tapering depths, demonstrating increasing amplification as the tapering depth increases, and the model with 1000 m tapering depth yields overall favourable results. Effects of varying anelastic attenuation are small compared to effects of velocity tapering and do not significantly bias the estimated tapering depth. Although a uniform tapering depth is adopted in the models, we observe some spatial variabilities that may further improve our method.

    « less
  2. ABSTRACT We explore the response of ground motions to topography during large crustal fault earthquakes by simulating several magnitude 6.5–7.0 rupture scenarios on the Seattle fault, Washington State. Kinematic simulations are run using a 3D spectral element code and a detailed seismic velocity model for the Puget Sound region. This model includes realistic surface topography and a near-surface low-velocity layer; a mesh spacing of ∼30 m at the surface allows modeling of ground motions up to 3 Hz. We simulate 20 earthquake scenarios using different slip distributions and hypocenter locations on a planar fault surface. Results indicate that average ground motions in simulations with and without topography are similar. However, shaking amplification is common at topographic highs, and more than a quarter of all sites experience short-period (≤2 s) ground-motion amplification greater than 25%–35%, compared with models without topography. Comparisons of peak ground velocity at the top and bottom of topographic features demonstrate that amplification is sensitive to period, with the greatest amplifications typically manifesting near a topographic feature’s estimated resonance frequency and along azimuths perpendicular to its primary axis of elongation. However, interevent variability in topographic response can be significant, particularly at shorter periods (<1 s). We do not observe a clear relationshipmore »between source centroid-to-site azimuths and the strength of topographic amplification. Overall, our results suggest that although topographic resonance does influence the average ground motions, other processes (e.g., localized focusing and scattering) also play a significant role in determining topographic response. However, the amount of consistent, significant amplification due to topography suggests that topographic effects should likely be considered in some capacity during seismic hazard studies.« less
  3. Abstract Firn is the pervasive surface material across Antarctica, and its structures reflect its formation and history in response to environmental perturbations. In addition to the role of firn in thermally isolating underlying glacial ice, it defines near-surface elastic and density structure and strongly influences high-frequency (> 5 Hz) seismic phenomena observed near the surface. We investigate high-frequency seismic data collected with an array of seismographs deployed on the West Antarctic Ice Sheet (WAIS) near WAIS Divide camp in January 2019. Cross-correlations of anthropogenic noise originating from the approximately 5 km-distant camp were constructed using a 1 km-diameter circular array of 22 seismographs. We distinguish three Rayleigh (elastic surface) wave modes at frequencies up to 50 Hz that exhibit systematic spatially varying particle motion characteristics. The horizontal-to-vertical ratio for the second mode shows a spatial pattern of peak frequencies that matches particle motion transitions for both the fundamental and second Rayleigh modes. This pattern is further evident in the appearance of narrow band spectral peaks. We find that shallow lateral structural variations are consistent with these observations, and model spectral peaks as Rayleigh wave amplifications within similarly scaled shallow basin-like structures delineated by the strong velocity and density gradients typicalmore »of Antarctic firn.« less
  4. Abstract Cook Inlet fore‐arc basin in south‐central Alaska is a large, deep (7.6 km) sedimentary basin with the Anchorage metropolitan region on its margins. From 2015 to 2017, a set of 28 broadband seismic stations was deployed in the region as part of the Southern Alaska Lithosphere and Mantle Observation Network (SALMON) project. The SALMON stations, which also cover the remote western portion of Cook Inlet basin and the back‐arc region, form the basis for our observational study of the seismic response of Cook Inlet basin. We quantify the influence of Cook Inlet basin on the seismic wavefield using three data sets: (1) ambient‐noise amplitudes of 18 basin stations relative to a nonbasin reference station, (2) earthquake ground‐motion metrics for 34 crustal and intraslab earthquakes, and (3) spectral ratios (SRs) between basin stations and nonbasin stations for the same earthquakes. For all analyses, we examine how quantities vary with the frequency content of the seismic signal and with the basin depth at each station. Seismic waves from earthquakes and from ambient noise are amplified within Cook Inlet basin. At low frequencies (0.1–0.5 Hz), ambient‐noise ratios and earthquake SRs are in a general agreement with power amplification of 6–14 dB, corresponding to amplitude amplification factors of 2.0–5.0.more »At high frequencies (0.5–4.0 Hz), the basin amplifies the earthquake wavefield by similar factors. Our results indicate stronger amplification for the deeper basin stations such as near Nikiski on the Kenai Peninsula and weaker amplification near the margins of the basin. Future work devoted to 3D wavefield simulations and treatment of source and propagation effects should improve the characterization of the frequency‐dependent response of Cook Inlet basin to recorded and scenario earthquakes in the region.« less
  5. Abstract The 24 January 2016 Iniskin, Alaska earthquake, at Mw 7.1 and 111 km depth, is the largest intermediate‐depth earthquake felt in Alaska, with recorded accelerations reaching 0.2g near Anchorage. Ground motion from the Iniskin earthquake is underpredicted by at least an order of magnitude near Anchorage and the Kenai Peninsula, and is similarly overpredicted in the back‐arc north and west of Cook Inlet. This is in strong contrast to the 30 November 2018 earthquake near Anchorage that was also Mw 7.1 but only 48 km deep. The Anchorage earthquake signals show strong distance decay and are generally well predicted by ground‐motion prediction equations. Smaller intermediate‐depth earthquakes (depth>70  km and 3<M<6.4) with hypocenters near the Iniskin mainshock show similar patterns in ground shaking as the Iniskin earthquake, indicating that the shaking pattern is due to path effects and not the source. The patterns indicate a first‐order role for mantle attenuation in the spatial variability of strong motion. In addition, along‐slab paths appear to be amplified by waveguide effects due to the subduction of crust at >1  Hz; the Anchorage and Kenai regions are particularly susceptible to this amplification due to their fore‐arc position. Both of these effects are absent in the 2018 Anchorage shaking pattern, becausemore »that earthquake is shallower and waves largely propagate in the upper‐plate crust. Basin effects are also present locally, but these effects do not explain the first‐order amplitude variations. These analyses show that intermediate‐depth earthquakes can pose a significant shaking hazard, and the pattern of shaking is strongly controlled by mantle structure.« less