skip to main content


Title: Acid‐in‐Clay Electrolyte for Wide‐Temperature‐Range and Long‐Cycle Proton Batteries
Abstract

Proton conduction underlies many important electrochemical technologies. A family of new proton electrolytes is reported: acid‐in‐clay electrolyte (AiCE) prepared by integrating fast proton carriers in a natural phyllosilicate clay network, which can be made into thin‐film (tens of micrometers) fluid‐impervious membranes. The chosen example systems (sepiolite–phosphoric acid) rank top among the solid proton conductors in terms of proton conductivities (15 mS cm−1at 25 °C, 0.023 mS cm−1at −82 °C), electrochemical stability window (3.35 V), and reduced chemical reactivity. A proton battery is assembled using AiCE as the solid electrolyte membrane. Benefitting from the wider electrochemical stability window, reduced corrosivity, and excellent ionic selectivity of AiCE, the two main problems (gassing and cyclability) of proton batteries are successfully solved. This work draws attention to the element cross‐over problem in proton batteries and the generic “acid‐in‐clay” solid electrolyte approach with superfast proton transport, outstanding selectivity, and improved stability for room‐ to cryogenic‐temperature protonic applications.

 
more » « less
Award ID(s):
2004636
NSF-PAR ID:
10367951
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
34
Issue:
23
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    All‐solid‐state sodium batteries, using solid electrolyte and abundant sodium resources, show great promise for safe, low‐cost, and large‐scale energy storage applications. The exploration of novel solid electrolytes is critical for the room temperature operation of all‐solid‐state Na batteries. An ideal solid electrolyte must have high ionic conductivity, hold outstanding chemical and electrochemical stability, and employ low‐cost synthetic methods. Achieving the combination of these properties is a grand challenge for the synthesis of sulfide‐based solid electrolytes. Design of the solid electrolyte Na3SbS4is described, realizing excellent air stability and an economic synthesis based on hard and soft acid and base (HSAB) theory. This new solid electrolyte also exhibits a remarkably high ionic conductivity of 1 mS cm−1at 25 °C and ideal compatibility with a metallic sodium anode.

     
    more » « less
  2. Abstract

    Lithium‐ion batteries have remained a state‐of‐the‐art electrochemical energy storage technology for decades now, but their energy densities are limited by electrode materials and conventional liquid electrolytes can pose significant safety concerns. Lithium metal batteries featuring Li metal anodes, solid polymer electrolytes, and high‐voltage cathodes represent promising candidates for next‐generation devices exhibiting improved power and safety, but such solid polymer electrolytes generally do not exhibit the required excellent electrochemical properties and thermal stability in tandem. Here, an interpenetrating network polymer with weakly coordinating anion nodes that functions as a high‐performing single‐ion conducting electrolyte in the presence of minimal plasticizer, with a wide electrochemical stability window, a high room‐temperature conductivity of 1.5 × 10−4S cm−1, and exceptional selectivity for Li‐ion conduction (tLi+= 0.95) is reported. Importantly, this material is also flame retardant and highly stable in contact with lithium metal. Significantly, a lithium metal battery prototype containing this quasi‐solid electrolyte is shown to outperform a conventional battery featuring a polymer electrolyte.

     
    more » « less
  3. Abstract

    Sulfide solid‐state electrolytes have remarkable ionic conductivity and low mechanical stiffness but suffer from relatively narrow electrochemical and chemical stability with electrodes. Therefore, pairing sulfide electrolytes with the proper cathode is crucial in developing stable all‐solid‐state Li batteries (ASLBs). Herein, one type of thioantimonate ion conductor, Li6+xGexSb1−xS5I, with different compositions is systematically synthesized and studied, among these compositions, an outstanding ionic conductivity of 1.6 mS cm−1is achieved with Li6.6Ge0.6Sb0.4S5I. To improve the energy density and advance the interface compatibility, a metal sulfide FeS2cathode with a high theoretical capacity (894 mAh g−1) and excellent compatibility with sulfide electrolytes is coupled with Li6.6Ge0.6Sb0.4S5I in ASLBs without additional interface engineering. The structural stabilities of Li6.6Ge0.6Sb0.4S5I and FeS2during cycling are characterized by operando energy dispersive X‐ray diffraction, which allows rapid collection of structural data without redesigning or disassembling the sealed cells and risking contamination by air. The electrochemical stability is assessed, and a safe operating voltage window ranging from 0.7≈2.4 V (vs. In–Li) is confirmed. Due to the solid confinement in the ASLBs, the Fe0aggregation and polysulfides shuttle effects are well addressed. The ASLBs exhibit an outstanding initial capacity of 715 mAh g−1at C/10 and are stable for 220 cycles with a high capacity retention of 84.5% at room temperature.

     
    more » « less
  4. In the presence of Lewis acid salts, the cyclic ether, dioxolane (DOL), is known to undergo ring-opening polymerization inside electrochemical cells to form solid-state polymer batteries with good interfacial charge-transport properties. Here we report that LiNO3, which is unable to ring-open DOL, possesses a previously unknown ability to coordinate with and strain DOL molecules in bulk liquids, completely arresting their crystallization. The strained DOL electrolytes exhibit physical properties analogous to amorphous polymers, including a prominent glass transition, elevated moduli, and low activation entropy for ion transport, but manifest unusually high, liquidlike ionic conductivities (e.g., 1 mS/cm) at temperatures as low as −50 °C. Systematic electrochemical studies reveal that the electrolytes also promote reversible cycling of Li metal anodes with high Coulombic efficiency (CE) on both conventional planar substrates (1 mAh/cm2over 1,000 cycles with 99.1% CE; 3 mAh/cm2over 300 cycles with 99.2% CE) and unconventional, nonplanar/three-dimensional (3D) substrates (10 mAh/cm2over 100 cycles with 99.3% CE). Our finding that LiNO3promotes reversibility of Li metal electrodes in liquid DOL electrolytes by a physical mechanism provides a possible solution to a long-standing puzzle in the field about the versatility of LiNO3salt additives for enhancing reversibility of Li metal electrodes in essentially any aprotic liquid electrolyte solvent. As a first step toward understanding practical benefits of these findings, we create functional Li||lithium iron phosphate (LFP) batteries in which LFP cathodes with high capacity (5 to 10 mAh/cm2) are paired with thin (50 μm) lithium metal anodes, and investigate their galvanostatic electrochemical cycling behaviors.

     
    more » « less
  5. Abstract

    Chloroaluminate ionic liquids are commonly used electrolytes in rechargeable aluminum batteries due to their ability to reversibly electrodeposit aluminum at room temperature. Progress in aluminum batteries is currently hindered by the limited electrochemical stability, corrosivity, and moisture sensitivity of these ionic liquids. Here, a solid polymer electrolyte based on 1‐ethyl‐3‐methylimidazolium chloride‐aluminum chloride, polyethylene oxide, and fumed silica is developed, exhibiting increased electrochemical stability over the ionic liquid while maintaining a high ionic conductivity of ≈13 mS cm−1. In aluminum–graphite cells, the solid polymer electrolytes enable charging to 2.8 V, achieving a maximum specific capacity of 194 mA h g−1at 66 mA g−1. Long‐term cycling at 2.7 V showed a reversible capacity of 123 mA h g−1at 360 mA g−1and 98.4% coulombic efficiency after 1000 cycles. Solid‐state nuclear magnetic resonance spectroscopy measurements reveal the formation of five‐coordinate aluminum species that crosslink the polymer network to enable a high ionic liquid loading in the solid electrolyte. This study provides new insights into the molecular‐level design and understanding of polymer electrolytes for high‐capacity aluminum batteries with extended potential limits.

     
    more » « less