skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Metal‐Organic Framework (MOF)‐Based Multifunctional Cargo Vehicle for Reactive‐Gas Delivery and Catalysis
Abstract The efficient delivery of reactive and toxic gaseous reagents to organic reactions was studied using metal‐organic frameworks (MOFs). The simultaneous cargo vehicle and catalytic capabilities of several MOFs were probed for the first time using the examples of aromatization, aminocarbonylation, and carbonylative Suzuki–Miyaura coupling reactions. These reactions highlight that MOFs can serve a dual role as a gas cargo vehicle and a catalyst, leading to product formation with yields similar to reactions employing pure gases. Furthermore, the MOFs can be recycled without sacrificing product yield, while simultaneously maintaining crystallinity. The reported findings were supported crystallographically and spectroscopically (e.g., diffuse reflectance infrared Fourier transform spectroscopy), foreshadowing a pathway for the development of multifunctional MOF‐based reagent‐catalyst cargo vessels for reactive gas reagents as an attractive alternative to the use of toxic pure gases or gas generators.  more » « less
Award ID(s):
1955768
PAR ID:
10368021
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
12
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fluorine is an increasingly common substituent in pharmaceuticals and agrochemicals because it improves the bioavailability and metabolic stability of organic molecules. Fluorinated gases represent intuitive building blocks for the late-stage installation of fluorinated groups, but they are generally overlooked because they require the use of specialized equipment. We report a general strategy for handling fluorinated gases as benchtop-stable solid reagents using metal-organic frameworks (MOFs). Gas-MOF reagents are prepared on gram-scale and used to facilitate fluorovinylation and fluoroalkylation reactions. Encapsulation of gas-MOF reagents within wax enables stable storage on the benchtop and controlled release into solution upon sonication, which represents a safer alternative to handling the gas directly. Furthermore, our approach enables high-throughput reaction development with these gases. 
    more » « less
  2. Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N2O5 in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N2O5 is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N2O5 as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO3, chlorination to ClNO2, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere. 
    more » « less
  3. Abstract Although many monometallic active sites have been installed in metal–organic frameworks (MOFs) for catalytic reactions, there are no effective strategies to generate bimetallic catalysts in MOFs. Here we report the synthesis of a robust, efficient, and reusable MOF catalyst, MOF‐NiH, by adaptively generating and stabilizing dinickel active sites using the bipyridine groups in MOF‐253 with the formula of Al(OH)(2,2′‐bipyridine‐5,5′‐dicarboxylate) forZ‐selective semihydrogenation of alkynes and selective hydrogenation of C=C bonds in α,β‐unsaturated aldehydes and ketones. Spectroscopic studies established the dinickel complex (bpy⋅)NiII2‐H)2NiII(bpy⋅) as the active catalyst. MOF‐NiH efficiently catalyzed selective hydrogenation reactions with turnover numbers of up to 192 and could be used in five cycles of hydrogenation reactions without catalyst leaching or significant decrease of catalytic activities. The present work uncovers a synthetic strategy toward solution‐inaccessible Earth‐abundant bimetallic MOF catalysts for sustainable catalysis. 
    more » « less
  4. null (Ed.)
    Defense against small molecule toxic gases is an important aspect of protection against chemical and biological threat as well as chemical releases from industrial accidents. Current protective respirators/garments cannot effectively block small molecule toxic gases and vapors and retain moisture transmission capability without a heavy burden. Here, we developed a nanopacked bed of nanoparticles of UiO-66-NH₂ metal organic framework (MOF) by synthesizing them in the pores of microporous expanded polytetrafluoroethylene (ePTFE) membranes. The submicron scale size of membrane pores ensures a large surface area of MOF nanoparticles which can capture/adsorb and react with toxic gas molecules efficiently. It was demonstrated that the microporous ePTFE membrane with UiO-66-NH₂ MOF grown inside and around the membrane can defend against ammonia for a significant length of time while allowing passage of moisture and nitrogen. It was also demonstrated that the MOF-loaded ePTFE membrane could provide significant protection from Cl₂ intrusion as well as intrusion from 2-chloroethyl ethyl sulfide (CEES) (a simulant for sulfur mustard). Such MOF-filled membranes exhausted by NH₃ breakthrough experiments were regenerated conveniently by heating at 60 °C for one week under vacuum for further/repeated use; a single regenerated membrane could block NH₃ for 200–300 min. The moisture permeability of such a membrane/nanopacked bed was considerably above the breathability threshold value of 2000 g/m² -day. The results suggest that microporous membranes filled with reactive MOF nanoparticles could be designed as protective barriers against toxic gases/vapors, e.g., NH₃ and Cl₂ and yet be substantially permeable to H₂O and air. 
    more » « less
  5. Abstract Retreat of continental ice sheets exposes comminuted sediment in disequilibrium with non-glacial conditions. Weathering of this sediment may create climate feedbacks by altering exchange of greenhouse gases between atmosphere and landscapes. Here we show in a partially deglaciated watershed in southwest Greenland that glacial meltwater contains low concentrations of reactive dissolved organic carbon that enhances weathering of freshly comminuted sediment causing net sequestration of carbon dioxide. In contrast, soil water reactions enhance methanogenesis and carbon dioxide production and create greenhouse gas sources as organic carbon is remineralized. We suggest that a change from greenhouse gas sinks in glacial meltwater to greenhouse gas sources in soil water creates a switch from a negative to positive warming feedback during glacial-interglacial transitions, but a negative warming feedback may return with future anthropogenic warming, glacial retreat, and increased meltwater production. We anticipate changing weathering reactions following exposure also alter nutrient and radiogenic isotope exports. 
    more » « less