skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Carbon Catalysts for Electrochemical CO 2 Reduction toward Multicarbon Products
Abstract Electrochemical CO2reduction offers a compelling route to mitigate atmospheric CO2concentration and store intermittent renewable energy in chemical bonds. Beyond C1, C2+feedstocks are more desirable due to their higher energy density and more significant market need. However, the CO2‐to‐C2+reduction suffers from significant barriers of CC coupling and complex reaction pathways. Due to remarkable tunability over morphology/pore architecture along with great feasibility of functionalization to modify the electronic and geometric structures, carbon materials, serving as active components, supports, and promoters, provide exciting opportunities to tune both the adsorption properties of intermediates and the local reaction environment for the CO2reduction, offering effective solutions to enable CC coupling and steer C2+evolution. However, general design principles remain ambiguous, causing an impediment to rational catalyst refinement and application thrusts. This review clarifies insightful design principles for advancing carbon materials. First, the current performance status and challenges are discussed and effective strategies are outlined to promote C2+evolution. Further, the correlation between the composition, structure, and morphology of carbon catalysts and their catalytic behavior is elucidated to establish catalytic mechanisms and critical factors determining C2+performance. Finally, future research directions and strategies are envisioned to inspire revolutionary advancements.  more » « less
Award ID(s):
1804326
PAR ID:
10368049
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
12
Issue:
24
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Electrochemical reduction of CO 2 into value-added fuels and chemicals driven by renewable energy presents a potentially sustainable route to mitigate CO 2 emissions and alleviate the dependence on fossil fuels. While tailoring the electronic structure of active components to modulate their intrinsic reactivity could tune the CO 2 reduction reaction (CO 2 RR), their use is limited by the linear scaling relation of intermediates. Due to the high susceptibility of the CO 2 RR to the local CO 2 concentration/pH and mass transportation of CO 2 /intermediates/products near the gas–solid–liquid three-phase interface, engineering catalysts’ morphological and interfacial properties holds great promise to regulate the CO 2 RR, which are irrelevant with linear scaling relation and possess high resistance to harsh reaction conditions. Herein, we provide a comprehensive overview of recent advances in tuning CO 2 reduction electrocatalysis via morphology and interface engineering. The fundamentals of the CO 2 RR and design principles for electrode materials are presented firstly. Then, approaches to build an efficient three-phase interface, tune the surface wettability, and design a favorable morphology are summarized; the relationship between the properties of engineered catalysts and their CO 2 RR performance is highlighted to reveal the activity-determining parameters and underlying catalytic mechanisms. Finally, challenges and opportunities are proposed to suggest the future design of advanced CO 2 RR electrode materials. 
    more » « less
  2. Abstract Hybrid organic‐inorganic heterogeneous catalytic interfaces, where traditional catalytic materials are modified with self‐assembled monolayers (SAMs), create promising features to control a wide range of catalytic processes through the design of dual organic‐inorganic active sites and the induced confinement effect. To provide a fundamental insight, we investigated CO2electroreduction into valuable C2chemicals (CO2RR‐to‐C2) over SAM‐modulated Cu. Our theoretical results show that 1/4 monolayer aminothiolates improve the stability, activity and selectivity of CO2RR‐to‐C2by: (1) decreasing surface energy to suppress surface reconstruction; (2) facilitating CO2activation and C−C coupling through dual organic‐inorganic (i. e., −NH, Cu) active sites; (3) promoting C−C coupling via confinement effects that enlarge the adsorption energy difference between CO*and COH*; (4) inducing local electric fields to Cu surface and changing its dipole moment and polarizability to be in favor of C−C coupling under electrode/electrolyte interfacial electric field. 
    more » « less
  3. Abstract The development of low‐cost and efficient electrocatalysts for nitrogen reduction reaction (NRR) at ambient conditions is crucial for NH3synthesis and provides an alternative to the traditional Harber‐Bosch process. Herein, by means of density functional theory (DFT) computations, the catalytic performance of a series of single metal atoms supported on graphitic carbon nitride (g‐C3N4) for NRR is evaluated. Among all the candidates, the Gibbs free energy change of the potential‐determining step for five single‐atom catalysts (SACs), namely Ti, Co, Mo, W, and Pt atoms supported on g‐C3N4monolayer, is lower than that on the Ru(0001) stepped surface. In particular, the single tungsten (W) atom anchored on g‐C3N4(W@g‐C3N4) exhibits the highest catalytic activity toward NRR with a limiting potential of −0.35 V via associative enzymatic pathway, and can well suppress the competing hydrogen evolution reaction. The high NRR activity and selectivity of W@g‐C3N4are attributed to its inherent properties, such as significant positive charge and large spin moment on the W atom, excellent electrical conductivity, and moderate adsorption strength with NRR intermediates. This work opens up a new avenue of N2reduction for renewable energy supplies and helps guide future development of single‐atom catalysts for NRR and other related electrochemical process. 
    more » « less
  4. Rechargeable Li-CO2batteries have emerged as promising candidates for next generation batteries due to their low cost, high theoretical capacity, and ability to capture the greenhouse gas CO2. However, these batteries still face challenges such as slow reaction kinetic and short cycle performance due to the accumulation of discharge products. To address this issue, it is necessary to design and develop high efficiency electrocatalysts that can improve CO2reduction reaction. In this study, we report the use of NiMn2O4electrocatalysts combined with multiwall carbon nanotubes as a cathode material in the Li-CO2batteries. This combination proved effective in decomposing discharge products and enhancing cycle performance. The battery shows stable discharge–charge cycles for at least 30 cycles with a high limited capacity of 1000 mAh g−1at current density of 100 mA g−1. Furthermore, the battery with the NiMn2O4@CNT catalyst exhibits a reversible discharge capacity of 2636 mAh g−1. To gain a better understanding of the reaction mechanism of Li-CO2batteries, spectroscopies and microscopies were employed to identify the chemical composition of the discharge products. This work paves a pathway to increase cycle performance in metal-CO2batteries, which could have significant implications for energy storage and the reduction of greenhouse gas emissions. 
    more » « less
  5. Abstract Carbon nanomaterials are promising metal‐free catalysts for energy conversion and storage, but the catalysts are usually developed via traditional trial‐and‐error methods. To rationally design and accelerate the search for the highly efficient catalysts, it is necessary to establish design principles for the carbon‐based catalysts. Here, theoretical analysis and material design of metal‐free carbon nanomaterials as efficient photo‐/electrocatalysts to facilitate the critical chemical reactions in clean and sustainable energy technologies are reviewed. These reactions include the oxygen reduction reaction in fuel cells, the oxygen evolution reaction in metal–air batteries, the iodine reduction reaction in dye‐sensitized solar cells, the hydrogen evolution reaction in water splitting, and the carbon dioxide reduction in artificial photosynthesis. Basic catalytic principles, computationally guided design approaches and intrinsic descriptors, catalytic material design strategies, and future directions are discussed for the rational design and synthesis of highly efficient carbon‐based catalysts for clean energy technologies. 
    more » « less