This data package contains data on lizards sampled by pitfall traps located at 11 consumer plots at Jornada Basin LTER site from 1989-2006. The objective of this study is to observe how shifts in vegetation resulting from desertification processes in the Chihuahaun desert have changed the spatial and temporal availability of resources for consumers. Desertification changes in the Jornada Basin include changes from grass to shrub dominated communities and major soil changes. If grassland systems respond to rainfall without significant lags, but shrub systems do not, then consumer species should reflect these differences. In addition, shifts from grassland to shrubland results in greater structural heterogeneity of the habitats. We hypothesized that consumer populations, diversity, and densities of some consumers will be higher in grasslands than in shrublands and will be related to the NPP of the sites. Lizards were captured in pitfall traps at the 11 LTER II/III consumer plots (a subset of NPP plots) quarterly for 2 weeks per quarter. Variables measured include species, sex, recapture status, snout-vent length, total length, weight, and whether tail is broken or whole. This study is complete. 
                        more » 
                        « less   
                    
                            
                            Mechanisms and drivers of alternative shrubland states
                        
                    
    
            Abstract Grassland‐to‐shrubland state change has been widespread in arid lands globally. Long‐term records at the Jornada Basin USDA‐LTER site in the North American Chihuahuan Desert document the time series of transition from grassland dominance in the 1850s to shrubland dominance in the 1990s. This broadscale change ostensibly resulted from livestock overgrazing in conjunction with periodic drought and represents the classic “grassland‐to‐shrubland” regime shift. However, finer‐scale observations reveal a more nuanced view of this state change that includes transitions from dominance by one shrub functional type to another (e.g., based on leaf habit [evergreen vs. deciduous], N2fixation potential, and drought tolerance). We analyzed the Jornada Basin historic vegetation data using a fine‐scale grid and classified the dominant vegetation in the resulting 890 cells on each of four dates (1858, 1915, 1928, and 1998). This analysis allowed us to quantify on contrasting soil geomorphic units the rate and spatial distribution of: (1) state change from grasslands to shrublands across the Jornada Basin, (2) transitions between shrub functional groups, and (3) transitions from shrub‐to‐grass dominance. Results from our spatially explicit, decadal timescale perspective show that: (1) shrubland ecosystems developing on former grasslands were spatially and temporally more dynamic than has been generally presumed, (2) in some locations, shrublands initially developing on grasslands subsequently transitioned to ecosystems dominated by a different shrub functional type, with these changes in shrub composition likely involving changes in soil properties, and (3) some shrub‐dominated locations have reverted to grass dominance. Accordingly, traditional, broad characterizations of “grassland‐to‐shrubland” state change may be too simplistic. An accounting of these complexities and transitions from one shrub functional group to another is important for projecting state change consequences for ecosystem processes. Understanding the mechanisms, drivers, and influence of interactions between patterns and processes on transitions between shrub states defined by woody plant functional types will be germane to predicting future landscape change. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10368093
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 13
- Issue:
- 4
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Multiyear periods (≥4 years) of extreme rainfall are increasing in frequency as climate continues to change, yet there is little understanding of how rainfall amount and heterogeneity in biophysical properties affect state changes in a sequence of wet and dry periods. Our objective was to examine the importance of rainfall periods, their legacies, and vegetation and soil properties to either the persistence of woody plants or a shift toward perennial grass dominance and a state reversal. We examined a 28‐year record of rainfall consisting of a sequence of multiyear periods (average, dry, wet, dry, average) for four ecosystem types in the Jornada Basin. We analyzed relationships between above ground net primary production (ANPP) and rainfall for three plant functional groups that characterize alternative states (perennial grasses, other herbaceous plants, dominant shrubs). A multimodel comparison was used to determine the relative importance of rainfall, soil, and vegetation properties. For perennial grasses, the greatest mean ANPP in mesquite‐ and tarbush‐dominated shrublands occurred in the wet period and in the dry period following the wet period in grasslands. Legacy effects in grasslands were asymmetric, where the lowest production was found in a dry period following an average period, and the greatest production occurred in a dry period following a wet period. For other herbaceous plants, in contrast, the greatest ANPP occurred in the wet period. Mesquite was the only dominant shrub species with a significant positive response in the wet period. Rainfall amount was a poor predictor of ANPP for each functional group when data from all periods were combined. Initial herbaceous biomass at the plant scale, patch‐scale biomass, and soil texture at the landscape scale improved the predictive relationships of ANPP compared with rainfall alone. Under future climate, perennial grass production is expected to benefit the most from wet periods compared with other functional groups with continued high grass production in subsequent dry periods that can shift (desertified) shrublands toward grasslands. The continued dominance by shrubs will depend on the effects that rainfall has on perennial grasses and the sequence of high‐ and low‐rainfall periods rather than the direct effects of rainfall on shrub production.more » « less
- 
            Woody plant encroachment is a main driver of landscape change in drylands globally. In the Chihuahuan Desert, past livestock overgrazing interacted with prolonged drought to convert vast expanses of black grama (Bouteloua eriopoda) grasslands to honey mesquite (Prosopis glandulosa) shrublands. Such ecosystem state transitions have greatly reduced habitat for grassland wildlife species, increased soil erosion, and inhibited the delivery of ecosystem services to local communities. The potential for wild herbivores to trigger or reinforce shrubland states may be underappreciated, however, and few studies compare herbivory effects across multiple consumer taxa. Here, I address the roles of multiple mammalian herbivores in driving or reinforcing landscape change in the Chihuahuan Desert by examining their effects on plant communities over multiple spatial and temporal scales, as well as across plant life stages. Moreover, I studied these herbivore effects in the context of precipitation pulses, long-term climate influences, competitive interactions, and habitat structure. I used two long-term studies that hierarchically excluded herbivores by body size over 25 years (Herbivore Exclosure Study) and 21 years (Ecotone Study), and a perennial grass seedling herbivory experiment. Native rodents and lagomorphs were especially important in determining grass cover and plant community composition in wet periods and affected perennial grass persistence over multiple life stages. Conversely, during drought, climate drove declines in perennial grass cover, promoting shrub expansion across the landscape. In that shrub-encroached state, native small mammals reinforced grass loss in part because habitat structure provided cover from predators. This research advances our understanding of an underappreciated component of ecosystem change in drylands – small mammal herbivory – and highlights the need to incorporate positive feedbacks from native small mammals into conceptual models of grassland-shrubland transitions.more » « less
- 
            Abstract Hysteresis is a fundamental characteristic of alternative stable state theory, yet evidence of hysteresis is rare. In mesic grasslands, fire frequency regulates transition from grass‐ to shrub‐dominated system states. It is uncertain, however, if increasing fire frequency can reverse shrub expansion, or if grass‐shrub dynamics exhibit hysteresis. We implemented annual burning in two infrequently burned grasslands and ceased burning in two grasslands burned annually. With annual fires, grassland composition converged on that of long‐term annually burned vegetation due to rapid recovery of grass cover, although shrubs persisted. When annual burning ceased, shrub cover increased, but community composition did not converge with a long‐term infrequently burned reference site because of stochastic and lagged dispersal by shrubs, reflecting hysteresis. Our results demonstrated that annual burning can slow, but not reverse, shrub encroachment. In addition, reversing fire frequencies resulted in hysteresis because vegetation trajectories from grassland to shrubland differed from those of shrubland to grassland.more » « less
- 
            Dryland environments are experiencing shifting ecogeomorphic patterns due to climatic changes and anthropogenic activities, resulting in a shift from grasslands to shrub-dominated landscapes. This dissertation investigates the effects from increasingly variable monsoonal precipitation and ecogeomorphic connectivity on perennial grass growth, litter distribution, and soil organic matter in drylands, with a focus on grass-shrub ecotones. Field experiments were conducted in the Chihuahuan Desert at the Jornada Basin Long-Term Ecological Research (LTER) site using a precipitation manipulation system and connectivity modifiers (ConMods) to assess their effects on plant productivity, recruitment, and soil nutrient distribution. Results show that reducing connectivity, combined with increased monsoonal precipitation, can enhance perennial grass productivity and recruitment, and affect the distribution of soil organic matter and non-photosynthetic vegetation. These findings contribute to our understanding of how aeolian processes and shifting precipitation regimes will shape vegetation patterns and soil properties in dryland environments under future climate scenarios. This research provides insights into potential mitigation strategies for combating shrub encroachment and promoting the sustainability of dryland ecosystems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
