skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: High‐Precision Printing of Complex Glass Imaging Optics with Precondensed Liquid Silica Resin
Abstract

3D printing of optics has gained significant attention in optical industry, but most of the research has been focused on organic polymers. In spite of recent progress in 3D printing glass, 3D printing of precision glass optics for imaging applications still faces challenges from shrinkage during printing and thermal processing, and from inadequate surface shape and quality to meet the requirements for imaging applications. This paper reports a new liquid silica resin (LSR) with higher curing speed, better mechanical properties, lower sintering temperature, and reduced shrinkage, as well as the printing process for high‐precision glass optics for imaging applications. It is demonstrated that the proposed material and printing process can print almost all types of optical surfaces, including flat, spherical, aspherical, freeform, and discontinuous surfaces, with accurate surface shape and high surface quality for imaging applications. It is also demonstrated that the proposed method can print complex optical systems with multiple optical elements, completely removing the time‐consuming and error‐prone alignment process. Most importantly, the proposed printing method is able to print optical systems with active moving elements, significantly improving system flexibility and functionality. The printing method will enable the much‐needed transformational manufacturing of complex freeform glass optics that are currently inaccessible with conventional processes.

 
more » « less
Award ID(s):
1918260
PAR ID:
10368098
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
9
Issue:
18
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Precision glass molding is a viable process for the cost-effective volume production of freeform optics. Process development is complex, requiring iterative trials of mold manufacture and metrology, glass mold prototyping, metrology and functional testing. This paper describes the first iteration in the development of a process for an Alvarez lens for visible light. The challenges of this optic are extremely tight band-RMS tolerances on a freeform shape over a maximum clear aperture of 45 mm, a 16:1 aspect ratio and a freeform departure of 329 micrometers. A freeform glass mold for an Alvarez lens was manufactured by coordinated-axis diamond turning in a mold substrate using a custom tool error correction method. The results of prototype precision glass molding are also reported. Mold surfaces and molded optical surfaces are analyzed with scanning white light interferometry. A surface roughness of approximately 3 nm RMS is obtained for both the mold substrate and the glass optic with high-fidelity reproduction of micro-surface structure in the glass. These measurements also identify challenging areas, particularly the presence of mid-spatial frequency errors on the optic originating from the machine thermal control system. The form of the molds was also measured with a profilometer; however, the mold surface does not agree with the expected prescription with an overall deviation in form of approximately 10 μm. The machining process is expected to have sub-micrometer error and the sources of this discrepancy are still being determined. Metrology of the glass optics is currently in progress. 
    more » « less
  2. Abstract

    Though 3D printing shows potential in fabricating complex optical components rapidly, its poor surface quality and dimensional accuracy render it unqualified for industrial optics applications. The layer steps in the building direction and the pixelated steps on each layer's contour result in inevitable microscale defects on the 3D‐printed surface, far away from the nanoscale roughness required for optics. This paper reports a customized vat photopolymerization‐based lens printing process, integrating unfocused image projection and precision spin coating to solve lateral and vertical stair‐stepping defects. A precision aspherical lens with less than 1 nm surface roughness and 1 µm profile accuracy is demonstrated. The 3D‐printed convex lens achieves a maximum MTF resolution of 347.7 lp mm−1. A mathematical model is established to predict and control the spin coating process on 3D‐printed surfaces precisely. Leveraging this low‐cost yet highly robust and repeatable 3D printing process, the precision fabrication of multi‐scale spherical, aspherical, and axicon lenses are showcased with sizes ranging from 3 to 70 mm using high clear photocuring resins. Additionally, molds are also printed to form multi‐scale PDMS‐based lenses.

     
    more » « less
  3. Freeform optics can reduce the cost, weight, and size of advanced imaging systems, but it is challenging to manufacture the complex rotationally asymmetric surfaces to optical tolerances. To address the need for disruptive, high-precision sub-aperture forming and finishing techniques for freeform optics, we investigate an alternative, non-contact polishing methodology using femtosecond lasers, combining modeling, experiments, and demonstrations. Femtosecondlaser- based polishing of germanium was investigated using an experimentally-validated twotemperature model of laser/germanium interaction to guide the understanding and selection of laser parameters to achieve near-nonthermal ablation for polishing and figuring. For the first time to our knowledge, model-guided femtosecond laser polishing of germanium was successfully demonstrated, achieving precision material removal while maintaining single-digit nanometer optical surface quality. The demonstrated femtosecond-laser-based polishing technique lays the foundation for semiconductor optics polishing/fabrication using femtosecond lasers and opens a viable path for high-precision, complex sub-aperture optical polishing tasks on various materials. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
    more » « less
  4. Abstract

    Advancements in three‐dimensional (3D) printing technology have the potential to transform the manufacture of customized optical elements, which today relies heavily on time‐consuming and costly polishing and grinding processes. However the inherent speed‐accuracy trade‐off seriously constrains the practical applications of 3D‐printing technology in the optical realm. In addressing this issue, here, a new method featuring a significantly faster fabrication speed, at 24.54 mm3h−1, without compromising the fabrication accuracy required to 3D‐print customized optical components is reported. A high‐speed 3D‐printing process with subvoxel‐scale precision (sub 5 µm) and deep subwavelength (sub 7 nm) surface roughness by employing the projection micro‐stereolithography process and the synergistic effects from grayscale photopolymerization and the meniscus equilibrium post‐curing methods is demonstrated. Fabricating a customized aspheric lens 5 mm in height and 3 mm in diameter is accomplished in four hours. The 3D‐printed singlet aspheric lens demonstrates a maximal imaging resolution of 373.2 lp mm−1with low field distortion less than 0.13% across a 2 mm field of view. This lens is attached onto a cell phone camera and the colorful fine details of a sunset moth's wing and the spot on a weevil's elytra are captured. This work demonstrates the potential of this method to rapidly prototype optical components or systems based on 3D printing.

     
    more » « less
  5. Freeform Fresnel optics represent an emerging category of modern optics that reproduces powerful optical functionalities while maintaining an ultra-compact volume. The existing ultra-precision machining (UPM) technique faces technical challenges in meeting the fabrication requirements for freeform Fresnel optics because of the absence of appropriate geometry definition and corresponding tool path planning strategy to overcome the extreme asymmetry and discontinuity. This study proposes a new scheme for ultra-precision machining using four axes (X,Y,Z,C) to fabricate freeform Fresnel optics, including a general geometry description for freeform Fresnel optics, the quasi-spiral tool path generation strategy to overcome the lack of rotary symmetry, and the adaptive tool pose manipulation method for avoiding tool interference. In addition, the tool edge compensation and the adaptive timestep determination are also introduced to enhance the performance and efficiency of the proposed scheme. The machining of two exemplary freeform Fresnel lenses is successfully demonstrated. Overall, this study introduces a comprehensive routine for the fabrication of freeform Fresnel optics and proposes the adaptive tool pose manipulation scheme, which has the potential for broader applications in the ultra-precision machining of complex or discontinuous surfaces.

     
    more » « less