skip to main content

Title: Anisotropic cosmic ray diffusion in isotropic Kolmogorov turbulence

Understanding the time-scales for diffusive processes and their degree of anisotropy is essential for modelling cosmic ray transport in turbulent magnetic fields. We show that the diffusion time-scales are isotropic over a large range of energy and turbulence levels, notwithstanding the high degree of anisotropy exhibited by the components of the diffusion tensor for cases with an ordered magnetic field component. The predictive power of the classical scattering relation as a description for the relation between the parallel and perpendicular diffusion coefficients is discussed and compared to numerical simulations. Very good agreement for a large parameter space is found, transforming classical scattering relation predictions into a computational prescription for the perpendicular component. We discuss and compare these findings, in particular, the time-scales to become diffusive with the time-scales that particles reside in astronomical environments, the so-called escape time-scales. The results show that, especially at high energies, the escape times obtained from diffusion coefficients may exceed the time-scales required for diffusion. In these cases, the escape time cannot be determined by the diffusion coefficients.

; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 2658-2666
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We recently extended our Parker-type transport equation for energetic particle interaction with numerous dynamic small-scale magnetic flux ropes (SMFRs) to include perpendicular diffusion in addition to parallel diffusion. We present a new analytical solution to this equation assuming heliocentric spherical geometry with spherical symmetry for all SMFR acceleration mechanisms present in the transport theory. With the goal of identifying the dominant mechanism(s) through which particles are accelerated by SMFRs, a search was launched to identify events behind interplanetary shocks that could be explained by our new solution and not classical diffusive shock acceleration. Two new SMFR acceleration events were identified in situ for the first time within heliocentric distances of 1 astronomical unit (au) in Helios A data. A Metropolis–Hastings algorithm is employed to fit the new solution to the energetic proton fluxes so that the relative strength of the transport coefficients associated with each SMFR acceleration mechanism can be determined. We conclude that the second-order Fermi mechanism for particle acceleration by SMFRs is more important than first-order Fermi acceleration due to the mean compression of the SMFRs regions during these new events. Furthermore, with the aid of SMFR parameters determined via the Grad–Shafranov reconstruction method, we find thatmore »second-order Fermi SMFR acceleration is dominated by the turbulent motional electric field parallel to the guide/background field. Finally, successful reproduction of energetic proton flux data during these SMFR acceleration events also required efficient particle escape from the SMFR acceleration regions.

    « less

    Owing to the complexity of turbulent magnetic fields, modelling the diffusion of cosmic rays is challenging. Based on the current understanding of anisotropic magnetohydrodynamic (MHD) turbulence, we use test particles to examine the cosmic rays’ superdiffusion in the direction perpendicular to the mean magnetic field. By changing Alfvén Mach number MA and sonic Mach number MS of compressible MHD simulations, our study covers a wide range of astrophysical conditions including subsonic warm gas phase and supersonic cold molecular gas. We show that freely streaming cosmic rays’ perpendicular displacement increases as 3/2 to the power of the time travelled along local magnetic field lines. This power-law index changes to 3/4 if the parallel propagation is diffusive. We find that the cosmic rays’ parallel mean free path decreases in a power-law relation of $M_\mathrm{ A}^{-2}$ in supersonic turbulence. We investigate the energy fraction of slow, fast, and Alfvénic modes and confirm the dominance of Alfvénic modes in the perpendicular superdiffusion. In particular, the energy fraction of fast mode, which is the main agent for pitch-angle scattering, increases with MA, but is insensitive to MS ≥ 2. Accordingly, our results suggest that the suppressed diffusion in supersonic molecular clouds arises primarily duemore »to the variations of MA instead of MS.

    « less
  3. Abstract

    It has been suggested before that small-scale magnetic flux rope (SMFR) structures in the solar wind can temporarily trap energetic charged particles. We present the derivation of a new fractional Parker equation for energetic-particle interaction with SMFRs from our pitch-angle-dependent fractional diffusion-advection equation that can account for such trapping effects. The latter was derived previously in le Roux & Zank from the first principles starting with the standard focused transport equation. The new equation features anomalous advection and diffusion terms. It suggests that energetic-particle parallel transport occurs with a decaying efficiency of advection effects as parallel superdiffusion becomes more dominant at late times. Parallel superdiffusion can be linked back to underlying anomalous pitch-angle transport, which might be subdiffusive during interaction with quasi-helical coherent SMFRs. We apply the new equation to time-dependent superdiffusive shock acceleration at a parallel shock. The results show that the superdiffusive-shock-acceleration timescale is fractional, the net fractional differential particle flux is conserved across the shock ignoring particle injection at the shock, and the accelerated particle spectrum at the shock converges to the familiar power-law spectrum predicted by standard steady-state diffusive-shock-acceleration theory at late times. Upstream, as parallel superdiffusion progressively dominates the advection of energetic particles, theirmore »spatial distributions decay on spatial scales that grow with time. Furthermore, superdiffusive parallel shock acceleration is found to be less efficient if parallel anomalous diffusion is more superdiffusive, while perpendicular particle escape from the shock, thought to be subdiffusive during SMFR interaction, is reduced when increasingly subdiffusive.

    « less
  4. Abstract Cosmic-ray transport in astrophysical environments is often dominated by the diffusion of particles in a magnetic field composed of both a turbulent and a mean component. This process, which is two-fold turbulent mixing in that the particle motion is stochastic with respect to the field lines, needs to be understood in order to properly model cosmic-ray signatures. One of the most important aspects in the modeling of cosmic-ray diffusion is that fully resonant scattering, the most effective such process, is only possible if the wave spectrum covers the entire range of propagation angles. By taking the wave spectrum boundaries into account, we quantify cosmic-ray diffusion parallel and perpendicular to the guide field direction at turbulence levels above 5% of the total magnetic field. We apply our results of the parallel and perpendicular diffusion coefficient to the Milky Way. We show that simple purely diffusive transport is in conflict with observations of the inner Galaxy, but that just by taking a Galactic wind into account, data can be matched in the central 5 kpc zone. Further comparison shows that the outer Galaxy at $$>5$$ > 5  kpc, on the other hand, should be dominated by perpendicular diffusion, likely changing tomore »parallel diffusion at the outermost radii of the Milky Way.« less

    Models for cosmic ray (CR) dynamics fundamentally depend on the rate of CR scattering from magnetic fluctuations. In the ISM, for CRs with energies ∼MeV-TeV, these fluctuations are usually attributed either to ‘extrinsic turbulence’ (ET) – a cascade from larger scales – or ‘self-confinement’ (SC) – self-generated fluctuations from CR streaming. Using simple analytic arguments and detailed ‘live’ numerical CR transport calculations in galaxy simulations, we show that both of these, in standard form, cannot explain even basic qualitative features of observed CR spectra. For ET, any spectrum that obeys critical balance or features realistic anisotropy, or any spectrum that accounts for finite damping below the dissipation scale, predicts qualitatively incorrect spectral shapes and scalings of B/C and other species. Even if somehow one ignored both anisotropy and damping, observationally required scattering rates disagree with ET predictions by orders of magnitude. For SC, the dependence of driving on CR energy density means that it is nearly impossible to recover observed CR spectral shapes and scalings, and again there is an orders-of-magnitude normalization problem. But more severely, SC solutions with super-Alfvénic streaming are unstable. In live simulations, they revert to either arbitrarily rapid CR escape with zero secondary production, ormore »to bottleneck solutions with far-too-strong CR confinement and secondary production. Resolving these fundamental issues without discarding basic plasma processes requires invoking different drivers for scattering fluctuations. These must act on a broad range of scales with a power spectrum obeying several specific (but plausible) constraints.

    « less