skip to main content


Title: The Angola Gyre is a hotspot of dinitrogen fixation in the South Atlantic Ocean
Abstract

Biological dinitrogen fixation is the major source of new nitrogen to marine systems and thus essential to the ocean’s biological pump. Constraining the distribution and global rate of dinitrogen fixation has proven challenging owing largely to uncertainty surrounding the controls thereon. Existing South Atlantic dinitrogen fixation rate estimates vary five-fold, with models attributing most dinitrogen fixation to the western basin. From hydrographic properties and nitrate isotope ratios, we show that the Angola Gyre in the eastern tropical South Atlantic supports the fixation of 1.4–5.4 Tg N.a−1, 28-108% of the existing (highly uncertain) estimates for the basin. Our observations contradict model diagnoses, revealing a substantial input of newly-fixed nitrogen to the tropical eastern basin and no dinitrogen fixation west of 7.5˚W. We propose that dinitrogen fixation in the South Atlantic occurs in hotspots controlled by the overlapping biogeography of excess phosphorus relative to nitrogen and bioavailable iron from margin sediments. Similar conditions may promote dinitrogen fixation in analogous ocean regions. Our analysis suggests that local iron availability causes the phosphorus-driven coupling of oceanic dinitrogen fixation to nitrogen loss to vary on a regional basis.

 
more » « less
Award ID(s):
1924270
NSF-PAR ID:
10368223
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
3
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Biological nitrogen fixation is a key process balancing the loss of combined nitrogen in the marine nitrogen cycle. Its relevance in upwelling or high nutrient regions is still unclear, with the few available studies in these regions of the ocean reporting rates that vary widely from below detection limit to > 100 nmol N L−1 d−1. In the eastern tropical Atlantic Ocean, two open ocean upwelling systems are active in boreal summer. One is the seasonal equatorial upwelling, where the residual phosphorus associated with aged upwelled waters is suggested to enhance nitrogen fixation in this season. The other is the Guinea Dome, a thermal upwelling dome. We conducted two surveys along 23° W across the Guinea Dome and the Equator from 15° N to 5° S in September 2015 and August–September 2016 with high latitudinal resolution (20–60 nm between stations). The abundance ofTrichodesmiumcolonies was characterized by an Underwater Vision Profiler 5 and the total biological nitrogen fixation in the euphotic layer was measured using the15N2technique. The highest abundances ofTrichodesmiumcolonies were found in the area of the Guinea Dome (9°–15° N) with a maximum of 3 colonies L−1near the surface. By contrast, colonies were almost absent in the Equatorial band between 2° N and 5° S. The highest nitrogen fixation rate was measured at the northern edge of the Guinea Dome in 2016 (ca. 31 nmol N L−1 d−1). In this region, where diazotrophs thrived on a sufficient supply of both phosphorus and iron, a patchy distribution was unveiled by our increased spatial resolution scheme. In the Equatorial band, rates were considerably lower, ranging from below detection limit to ca. 4 nmol N L−1 d−1, with a clear difference in magnitude between 2015 (rates close to zero) and 2016 (average rates around 2 nmol N L−1 d−1). This difference seemed triggered by a contrasting supply of phosphorus between years. Our study stresses the importance of surveys with sampling at fine-scale spatial resolution, and shows unexpected high variability in the rates of nitrogen fixation in the Guinea Dome, a region where diazotrophy is a significant process supplying new nitrogen into the euphotic layer.

     
    more » « less
  2. The spatial distribution of marine di-nitrogen (N2) fixation informs our understanding of the sensitivities of this process as well as the potential for this new nitrogen (N) source to drive export production, influencing the global carbon (C) cycle and climate. Using geochemically-derived δ15N budgets, we quantified rates of N2fixation and its importance for supporting export production at stations sampled near the southwest Pacific Tonga-Kermadec Arc. Recent observations indicate that shallow (<300 m) hydrothermal vents located along the arc provide significant dissolved iron to the euphotic zone, stimulating N2fixation. Here we compare measurements of water column δ15NNO3+NO2with sinking particulate δ15N collected by short-term sediment traps deployed at 170 m and 270 m at stations in close proximity to subsurface hydrothermal activity, and the δ15N of N2fixation. Results from the δ15N budgets yield high geochemically-based N2fixation rates (282 to 638 µmol N m-2d-1) at stations impacted by hydrothermal activity, supporting 64 to 92% of export production in late spring. These results are consistent with contemporaneous15N2uptake rate estimates and molecular work describing highTrichodesmiumspp. and other diazotroph abundances associated with elevated N2fixation rates. Further, the δ15N of sinking particulate N collected at 1000 m over an annual cycle revealed sinking fluxes peaked in the summer and coincided with the lowest δ15N, while lower winter sinking fluxes had the highest δ15N, indicating isotopically distinct N sources supporting export seasonally, and aligning with observations from most other δ15N budgets in oligotrophic regions. Consequently, the significant regional N2fixation input to the late spring/summer Western Tropical South Pacific results in the accumulation of low-δ15NNO3+NO2in the upper thermocline that works to lower the elevated δ15NNO3+NO2generated in the oxygen deficient zones in the Eastern Tropical South Pacific.

     
    more » « less
  3. Abstract

    In the North Atlantic Ocean, dinitrogen (N2) fixation on the western continental shelf represents a significant fraction of basin‐wide nitrogen (N) inputs. However, the factors regulating coastal N2fixation remain poorly understood, in part due to sharp physico‐chemical gradients and dynamic water mass interactions that are difficult to constrain via traditional oceanographic approaches. This study sought to characterize the spatial heterogeneity of N2fixation on the western North Atlantic shelf, at the confluence of Mid‐ and South Atlantic Bight shelf waters and the Gulf Stream, in August 2016. Rates were quantified using the15N2bubble release method and used to build empirical models of regional N2fixation via a random forest machine learning approach. N2fixation rates were then predicted from high‐resolution CTD and satellite data to infer the variability of its depth and surface distributions, respectively. Our findings suggest that the frontal mixing zone created conditions conducive to exceptionally high N2fixation rates (> 100 nmol N L−1d−1), which were likely driven by the haptophyte‐symbiont UCYN‐A. Above and below this hotspot, N2fixation rates were highest on the shelf due to the high particulate N concentrations there. Conversely, specific N2uptake rates, a biomass‐independent metric for diazotroph activity, were enhanced in the oligotrophic slope waters. Broadly, these observations suggest that N2fixation is favored offshore but occurs continuously across the shelf. Nevertheless, our model results indicate that there is a niche for diazotrophs along the coastline as phytoplankton populations begin to decline, likely due to exhaustion of coastal nutrients.

     
    more » « less
  4. Abstract

    In this study, we investigate the biogeochemical consequences of fire in seasonally flooded Amazon forests, where recent declines in forest cover have been linked to increases in fire frequency and severity. Previous studies have hypothesized that a quasi‐permanent state‐shift transition from typical Amazon forests to open savannas can occur when fire results in further depletion of already impoverished soil nutrient pools. Asymbiotic N2fixation (ANF) is an essential pathway for fire‐affected forests to acquire nitrogen (N) after disturbance, but ANF response to fire has yet to be quantified in Amazonia. Here, we quantify ANF through field sampling and laboratory incubations using15N‐labeled dinitrogen (15N2) and measurement of 14 biogeochemical parameters in surface (0–10 cm) and subsurface (10–30 cm) soils. Our data represent burned and unburned replicated sampling sites, across five stands, spanning a gradient from infrequent (once in 13 years) to frequent (five times in 13 years) fire occurrences. ANF did not vary with fire frequency but was, on average, 24% lower in burned than in unburned surface soils across all stands. Burned and unburned subsurface soils had similar ANF rates. About 58% of ANF variance was explained by the joint effect of carbon (C):N ratio and available phosphorus (P) in burned and unburned soils. ANF increased linearly with C:N and P availability in unburned soils, but a highly non‐linear relationship was observed in burned soils. Our findings show that fire alters soil C‐to‐nutrient stoichiometry, which resulted in lower N inputs via ANF into burned relative to unburned tropical forest soils.

     
    more » « less
  5. Abstract

    Examination of dinitrogen (N2) fixation in the Eastern Tropical South Pacific oxygen deficient zone has raised questions about the range of diazotrophs in the deep sea and their quantitative importance as a source of new nitrogen globally. However, technical considerations in the deployment of stable isotopes in quantifying N2fixation rates have complicated interpretation of this research. Here, we report the findings of a comprehensive survey of N2fixation within, above and below the Eastern Tropical South Pacific oxygen deficient zone. N2fixation rates were measured using a robust15N tracer method (bubble removal) that accounts for the slow dissolution of N2gas and calculated using a conservative approach. N2fixation was only detected in a subset of samples (8 of 125 replicated measurements) collected within suboxic waters (< 20 μmol O2kg−1) or at the oxycline. Most of these detectable rates were measured at nearshore stations, or where surface productivity was high. These findings support the hypothesis that low oxygen/high organic carbon conditions favor non‐cyanobacterial diazotrophs. Nevertheless, this study indicates that N2fixation is neither widespread nor quantitatively important throughout this region.

     
    more » « less