Abstract Recent in situ observations show that haze particles exist in a convection cloud chamber. The microphysics schemes previously used for large‐eddy simulations of the cloud chamber could not fully resolve haze particles and the associated processes, including their activation and deactivation. Specifically, cloud droplet activation was modeled based on Twomey‐type parameterizations, wherein cloud droplets were formed when a critical supersaturation for the available cloud condensation nuclei (CCN) was exceeded and haze particles were not explicitly resolved. Here, we develop and adapt haze‐capable bin and Lagrangian microphysics schemes to properly resolve the activation and deactivation processes. Results are compared with the Twomey‐type CCN‐based bin microphysics scheme in which haze particles are not fully resolved. We find that results from the haze‐capable bin microphysics scheme agree well with those from the Lagrangian microphysics scheme. However, both schemes significantly differ from those from a CCN‐based bin microphysics scheme unless CCN recycling is considered. Haze particles from the recycling of deactivated cloud droplets can strongly enhance cloud droplet number concentration due to a positive feedback in haze‐cloud interactions in the cloud chamber. Haze particle size distributions are more realistic when considering solute and curvature effects that enable representing the complete physics of the activation process. Our study suggests that haze particles and their interactions with cloud droplets may have a strong impact on cloud properties when supersaturation fluctuations are comparable to mean supersaturation, as is the case in the cloud chamber and likely is the case in the atmosphere, especially in polluted conditions.
more »
« less
Large‐Eddy Simulations of a Convection Cloud Chamber: Sensitivity to Bin Microphysics and Advection
Abstract Bin microphysics schemes are useful tools for cloud simulations and are often considered to provide a benchmark for model intercomparison. However, they may experience issues with numerical diffusion, which are not well quantified, and the transport of hydrometeors depends on the choice of advection scheme, which can also change cloud simulation results. Here, an atmospheric large‐eddy simulation model is adapted to simulate a statistically steady‐state cloud in a convection cloud chamber under well‐constrained conditions. Two bin microphysics schemes, a spectral bin method and the method of moments, as well as several advection methods for the transport of the microphysical variables are employed for model intercomparison. Results show that different combinations of microphysics and advection schemes can lead to considerable differences in simulated cloud properties, such as cloud droplet number concentration. We find that simulations using the advection scheme that suffers more from numerical diffusion tends to have a smaller droplet number concentration and liquid water content, while simulation with the microphysics scheme that suffers more from numerical diffusion tends to have a broader size distribution and thus larger mean droplet sizes. Sensitivities of simulations to bin resolution, spatial resolution, and temporal resolution are also tested. We find that refining the microphysical bin resolution leads to a broader cloud droplet size distribution due to the advection of hydrometeors. Our results provide insight for using different advection and microphysics schemes in cloud chamber simulations, which might also help understand the uncertainties of the schemes used in atmospheric cloud simulations.
more »
« less
- Award ID(s):
- 1754244
- PAR ID:
- 10368264
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 14
- Issue:
- 5
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Pi Cloud Chamber offers a unique opportunity to study aerosol‐cloud microphysics interactions in a steady‐state, turbulent environment. In this work, an atmospheric large‐eddy simulation (LES) model with spectral bin microphysics is scaled down to simulate these interactions, allowing comparison with experimental results. A simple scalar flux budget model is developed and used to explore the effect of sidewalls on the bulk mixing temperature, water vapor mixing ratio, and supersaturation. The scaled simulation and the simple scalar flux budget model produce comparable bulk mixing scalar values. The LES dynamics results are compared with particle image velocimetry measurements of turbulent kinetic energy, energy dissipation rates, and large‐scale oscillation frequencies from the cloud chamber. These simulated results match quantitatively to experimental results. Finally, with the bin microphysics included the LES is able to simulate steady‐state cloud conditions and broadening of the cloud droplet size distributions with decreasing droplet number concentration, as observed in the experiments. The results further suggest that collision‐coalescence does not contribute significantly to this broadening. This opens a path for further detailed intercomparison of laboratory and simulation results for model validation and exploration of specific physical processes.more » « less
-
Abstract Collisional growth of cloud droplets is an essential yet uncertain process for drizzle and precipitation formation. To improve the quantitative understanding of this key component of cloud‐aerosol‐turbulence interactions, observational studies of collision‐coalescence in a controlled laboratory environment are needed. In an existing convection‐cloud chamber (the Pi Chamber), collisional growth is limited by low liquid water content and short droplet residence times. In this work, we use numerical simulations to explore various configurations of a convection‐cloud chamber that may intensify collision‐coalescence. We employ a large‐eddy simulation (LES) model with a size‐resolved (bin) cloud microphysics scheme to explore how cloud properties and the intensity of collision‐coalescence are affected by the chamber size and aspect ratio, surface roughness, side‐wall wetness, side‐wall temperature arrangement, and aerosol injection rate. Simulations without condensation and evaporation within the domain are first performed to explore the turbulence dynamics and wall fluxes. The LES wall fluxes are used to modify the Scalar Flux‐budget Model, which is then applied to demonstrate the need for non‐uniform side‐wall temperature (two side walls as warm as the bottom and the two others as cold as the top) to maintain high supersaturation in a tall chamber. The results of LES with full cloud microphysics reveal that collision‐coalescence is greatly enhanced by employing a taller chamber with saturated side walls, non‐uniform side‐wall temperature, and rough surfaces. For the conditions explored, although lowering the aerosol injection rate broadens the droplet size distribution, favoring collision‐coalescence, the reduced droplet number concentration decreases the frequency of collisions.more » « less
-
Abstract This study presents the first model intercomparison of aerosol‐cloud‐turbulence interactions in a controlled cloudy Rayleigh‐Bénard Convection chamber environment, utilizing the Pi Chamber at Michigan Technological University. We analyzed simulated cloud chamber‐averaged statistics of microphysics and thermodynamics in a warm‐phase, cloudy environment under steady‐state conditions at varying aerosol injection rates. Simulation results from seven distinct models (DNS, LES, and a 1D turbulence model) were compared. Our findings demonstrate that while all models qualitatively capture observed trends in droplet number concentration, mean radius, and droplet size distributions at both high and low aerosol injection rates, significant quantitative differences were observed. Notably, droplet number concentrations varied by over two orders of magnitude between models for the same injection rates, indicating sensitivities to the model treatments in droplet activation and removal and wall fluxes. Furthermore, inconsistencies in vertical relative humidity profiles and in achieving steady‐state liquid water content suggest the need for further investigation into the mechanisms driving these variations. Despite these discrepancies, the models generally reproduced consistent power‐law relationships between the microphysical variables. This model intercomparison underscores the importance of controlled cloud chamber experiments for validating and improving cloud microphysical parameterizations. Recommendations for future modeling studies are also highlighted, including constraining wall conditions and processes, investigating droplet/aerosol removal (including sidewall losses), and conducting simplified experiments to isolate specific processes contributing to model divergence and reduce model uncertainties.more » « less
-
Abstract The convection–cloud chamber enables measurement of aerosol and cloud microphysics, as well as their interactions, within a turbulent environment under steady‐state conditions. Increasing the size of a convection–cloud chamber, while holding the imposed temperature difference constant, leads to increased Rayleigh, Reynolds and Nusselt numbers. Large–eddy simulation coupled with a bin microphysics model allows the influence of increased velocity, time, and spatial scales on cloud microphysical properties to be explored. Simulations of a convection–cloud chamber, with fixed aspect ratio and increasing heights ofH = 1, 2, 4, and (for dry conditions only) 8 m are performed. The key findings are: Velocity fluctuations scale asH1/3, consistent with the Deardorff expression for convective velocity, and implying that the turbulence correlation time scales asH2/3. Temperature and other scalar fluctuations scale asH−3/7. Droplet size distributions from chambers of different sizes can be matched by adjusting the total aerosol injection rate as the horizontal cross‐sectional area (i.e., asH2for constant aspect ratio). Injection of aerosols at a point versus distributed throughout the volume makes no difference for polluted conditions, but can lead to cloud droplet size distribution broadening in clean conditions. Cloud droplet growth by collision and coalescence leads to a broader right tail of the distribution compared to condensation growth alone, and this tail increases in magnitude and extent monotonically as the increase of chamber height. These results also have implications for scaling within turbulent, cloudy mixed‐layers in the atmosphere, such as fog layers.more » « less
An official website of the United States government
