Abstract MotivationWhole-genome alignment is an important problem in genomics for comparing different species, mapping draft assemblies to reference genomes and identifying repeats. However, for large plant and animal genomes, this task remains compute and memory intensive. In addition, current practical methods lack any guarantee on the characteristics of output alignments, thus making them hard to tune for different application requirements. ResultsWe introduce an approximate algorithm for computing local alignment boundaries between long DNA sequences. Given a minimum alignment length and an identity threshold, our algorithm computes the desired alignment boundaries and identity estimates using kmer-based statistics, and maintains sufficient probabilistic guarantees on the output sensitivity. Further, to prioritize higher scoring alignment intervals, we develop a plane-sweep based filtering technique which is theoretically optimal and practically efficient. Implementation of these ideas resulted in a fast and accurate assembly-to-genome and genome-to-genome mapper. As a result, we were able to map an error-corrected whole-genome NA12878 human assembly to the hg38 human reference genome in about 1 min total execution time and <4 GB memory using eight CPU threads, achieving significant improvement in memory-usage over competing methods. Recall accuracy of computed alignment boundaries was consistently found to be >97% on multiple datasets. Finally, we performed a sensitive self-alignment of the human genome to compute all duplications of length ≥1 Kbp and ≥90% identity. The reported output achieves good recall and covers twice the number of bases than the current UCSC browser’s segmental duplication annotation. Availability and implementationhttps://github.com/marbl/MashMap
more »
« less
Markov chains improve the significance computation of overlapping genome annotations
Abstract MotivationGenome annotations are a common way to represent genomic features such as genes, regulatory elements or epigenetic modifications. The amount of overlap between two annotations is often used to ascertain if there is an underlying biological connection between them. In order to distinguish between true biological association and overlap by pure chance, a robust measure of significance is required. One common way to do this is to determine if the number of intervals in the reference annotation that intersect the query annotation is statistically significant. However, currently employed statistical frameworks are often either inefficient or inaccurate when computing P-values on the scale of the whole human genome. ResultsWe show that finding the P-values under the typically used ‘gold’ null hypothesis is NP-hard. This motivates us to reformulate the null hypothesis using Markov chains. To be able to measure the fidelity of our Markovian null hypothesis, we develop a fast direct sampling algorithm to estimate the P-value under the gold null hypothesis. We then present an open-source software tool MCDP that computes the P-values under the Markovian null hypothesis in O(m2+n) time and O(m) memory, where m and n are the numbers of intervals in the reference and query annotations, respectively. Notably, MCDP runtime and memory usage are independent from the genome length, allowing it to outperform previous approaches in runtime and memory usage by orders of magnitude on human genome annotations, while maintaining the same level of accuracy. Availability and implementationThe software is available at https://github.com/fmfi-compbio/mc-overlaps. All data for reproducibility are available at https://github.com/fmfi-compbio/mc-overlaps-reproducibility. Supplementary informationSupplementary data are available at Bioinformatics online.
more »
« less
- PAR ID:
- 10368288
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 38
- Issue:
- Supplement_1
- ISSN:
- 1367-4803
- Format(s):
- Medium: X Size: p. i203-i211
- Size(s):
- p. i203-i211
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract MotivationGenome-wide maps of epigenetic modifications are powerful resources for non-coding genome annotation. Maps of multiple epigenetics marks have been integrated into cell or tissue type-specific chromatin state annotations for many cell or tissue types. With the increasing availability of multiple chromatin state maps for biologically similar samples, there is a need for methods that can effectively summarize the information about chromatin state annotations within groups of samples and identify differences across groups of samples at a high resolution. ResultsWe developed CSREP, which takes as input chromatin state annotations for a group of samples. CSREP then probabilistically estimates the state at each genomic position and derives a representative chromatin state map for the group. CSREP uses an ensemble of multi-class logistic regression classifiers that predict the chromatin state assignment of each sample given the state maps from all other samples. The difference in CSREP’s probability assignments for the two groups can be used to identify genomic locations with differential chromatin state assignments. Using groups of chromatin state maps of a diverse set of cell and tissue types, we demonstrate the advantages of using CSREP to summarize chromatin state maps and identify biologically relevant differences between groups at a high resolution. Availability and implementationThe CSREP source code and generated data are available at http://github.com/ernstlab/csrep. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
Abstract MotivationSpecies tree inference from multi-copy gene trees has long been a challenge in phylogenomics. The recent method ASTRAL-Pro has made strides by enabling multi-copy gene family trees as input and has been quickly adopted. Yet, its scalability, especially memory usage, needs to improve to accommodate the ever-growing dataset size. ResultsWe present ASTRAL-Pro 2, an ultrafast and memory efficient version of ASTRAL-Pro that adopts a placement-based optimization algorithm for significantly better scalability without sacrificing accuracy. Availability and implementationThe source code and binary files are publicly available at https://github.com/chaoszhang/ASTER; data are available at https://github.com/chaoszhang/A-Pro2_data. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
Schwartz, Russell (Ed.)Abstract MotivationSince 2016, the number of microbial species with available reference genomes in NCBI has more than tripled. Multiple genome alignment, the process of identifying nucleotides across multiple genomes which share a common ancestor, is used as the input to numerous downstream comparative analysis methods. Parsnp is one of the few multiple genome alignment methods able to scale to the current era of genomic data; however, there has been no major release since its initial release in 2014. ResultsTo address this gap, we developed Parsnp v2, which significantly improves on its original release. Parsnp v2 provides users with more control over executions of the program, allowing Parsnp to be better tailored for different use-cases. We introduce a partitioning option to Parsnp, which allows the input to be broken up into multiple parallel alignment processes which are then combined into a final alignment. The partitioning option can reduce memory usage by over 4× and reduce runtime by over 2×, all while maintaining a precise core-genome alignment. The partitioning workflow is also less susceptible to complications caused by assembly artifacts and minor variation, as alignment anchors only need to be conserved within their partition and not across the entire input set. We highlight the performance on datasets involving thousands of bacterial and viral genomes. Availability and implementationParsnp v2 is available at https://github.com/marbl/parsnp.more » « less
-
Abstract MotivationCarbohydrate-active enzymes (CAZymes) are extremely important to bioenergy, human gut microbiome, and plant pathogen researches and industries. Here we developed a new amino acid k-mer-based CAZyme classification, motif identification and genome annotation tool using a bipartite network algorithm. Using this tool, we classified 390 CAZyme families into thousands of subfamilies each with distinguishing k-mer peptides. These k-mers represented the characteristic motifs (in the form of a collection of conserved short peptides) of each subfamily, and thus were further used to annotate new genomes for CAZymes. This idea was also generalized to extract characteristic k-mer peptides for all the Swiss-Prot enzymes classified by the EC (enzyme commission) numbers and applied to enzyme EC prediction. ResultsThis new tool was implemented as a Python package named eCAMI. Benchmark analysis of eCAMI against the state-of-the-art tools on CAZyme and enzyme EC datasets found that: (i) eCAMI has the best performance in terms of accuracy and memory use for CAZyme and enzyme EC classification and annotation; (ii) the k-mer-based tools (including PPR-Hotpep, CUPP and eCAMI) perform better than homology-based tools and deep-learning tools in enzyme EC prediction. Lastly, we confirmed that the k-mer-based tools have the unique ability to identify the characteristic k-mer peptides in the predicted enzymes. Availability and implementationhttps://github.com/yinlabniu/eCAMI and https://github.com/zhanglabNKU/eCAMI. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
An official website of the United States government
