skip to main content

Title: 3D elemental abundances of stars at formation across the histories of Milky Way-mass galaxies in the FIRE simulations
ABSTRACT

We characterize the 3D spatial variations of [Fe/H], [Mg/H], and [Mg/Fe] in stars at the time of their formation, across 11 simulated Milky Way (MW)- and M31-mass galaxies in the FIRE-2 simulations, to inform initial conditions for chemical tagging. The overall scatter in [Fe/H] within a galaxy decreased with time until $\approx 7 \, \rm {Gyr}$ ago, after which it increased to today: this arises from a competition between a reduction of azimuthal scatter and a steepening of the radial gradient in abundance over time. The radial gradient is generally negative, and it steepened over time from an initially flat gradient $\gtrsim 12 \, \rm {Gyr}$ ago. The strength of the present-day abundance gradient does not correlate with when the disc ‘settled’; instead, it best correlates with the radial velocity dispersion within the galaxy. The strength of azimuthal variation is nearly independent of radius, and the 360 deg scatter decreased over time, from $\lesssim 0.17 \, \rm {dex}$ at $t_{\rm lb} = 11.6 \, \rm {Gyr}$ to $\sim 0.04 \, \rm {dex}$ at present-day. Consequently, stars at $t_{\rm lb} \gtrsim 8 \, \rm {Gyr}$ formed in a disc with primarily azimuthal scatter in abundances. All stars formed in a more » vertically homogeneous disc, Δ[Fe/H]$\le 0.02 \, \rm {dex}$ within $1 \, \rm {kpc}$ of the galactic mid-plane, with the exception of the young stars in the inner $\approx 4 \, \rm {kpc}$ at z ∼ 0. These results generally agree with our previous analysis of gas-phase elemental abundances, which reinforces the importance of cosmological disc evolution and azimuthal scatter in the context of stellar chemical tagging. We provide analytic fits to our results for use in chemical-tagging analyses.

« less
Authors:
; ; ;
Award ID(s):
2045928
Publication Date:
NSF-PAR ID:
10368301
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
3
Page Range or eLocation-ID:
p. 4270-4289
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We use FIRE-2 simulations to examine 3D variations of gas-phase elemental abundances of [O/H], [Fe/H], and [N/H] in 11 MW and M31-mass galaxies across their formation histories at z ≤ 1.5 ($t_{\rm lookback} \le 9.4 \, \rm {Gyr}$), motivated by characterizing the initial conditions of stars for chemical tagging. Gas within $1 \, \rm {kpc}$ of the disc mid-plane is vertically homogeneous to $\lesssim 0.008 \, \rm {dex}$ at all z ≤ 1.5. We find negative radial gradients (metallicity decreases with galactocentric radius) at all times, which steepen over time from $\approx \! -0.01 \, \rm {dex}\, \rm {kpc}^{-1}$ at z = 1 ($t_{\rm lookback} = 7.8 \, \rm {Gyr}$) to $\approx \! -0.03 \, \rm {dex}\, \rm {kpc}^{-1}$ at z = 0, and which broadly agree with observations of the MW, M31, and nearby MW/M31-mass galaxies. Azimuthal variations at fixed radius are typically $0.14 \, \rm {dex}$ at z = 1, reducing to $0.05 \, \rm {dex}$ at z = 0. Thus, over time radial gradients become steeper while azimuthal variations become weaker (more homogeneous). As a result, azimuthal variations were larger than radial variations at z ≳ 0.8 ($t_{\rm lookback} \gtrsim 6.9 \, \rm {Gyr}$). Furthermore, elemental abundancesmore »are measurably homogeneous (to ≲0.05 dex) across a radial range of $\Delta R \approx 3.5 \, \rm {kpc}$ at z ≳ 1 and $\Delta R \approx 1.7 \, \rm {kpc}$ at z = 0. We also measure full distributions of elemental abundances, finding typically negatively skewed normal distributions at z ≳ 1 that evolve to typically Gaussian distributions by z = 0. Our results on gas abundances inform the initial conditions for stars, including the spatial and temporal scales for applying chemical tagging to understand stellar birth in the MW.« less
  2. Abstract The APOGEE Open Cluster Chemical Abundances and Mapping survey is used to probe the chemical evolution of the s-process element cerium in the Galactic disk. Cerium abundances were derived from measurements of Ce ii lines in the APOGEE spectra using the Brussels Automatic Code for Characterizing High Accuracy Spectra in 218 stars belonging to 42 open clusters. Our results indicate that, in general, for ages < 4 Gyr, younger open clusters have higher [Ce/Fe] and [Ce/ α -element] ratios than older clusters. In addition, metallicity segregates open clusters in the [Ce/X]–age plane (where X can be H, Fe, or the α -elements O, Mg, Si, or Ca). These metallicity-dependent relations result in [Ce/Fe] and [Ce/ α ] ratios with ages that are not universal clocks. Radial gradients of [Ce/H] and [Ce/Fe] ratios in open clusters, binned by age, were derived for the first time, with d [Ce/H]/ d R GC being negative, while d [Ce/Fe]/ d R GC is positive. [Ce/H] and [Ce/Fe] gradients are approximately constant over time, with the [Ce/Fe] gradient becoming slightly steeper, changing by ∼+0.009 dex kpc −1 Gyr −1 . Both the [Ce/H] and [Ce/Fe] gradients are shifted to lower values of [Ce/H] andmore »[Ce/Fe] for older open clusters. The chemical pattern of Ce in open clusters across the Galactic disk is discussed within the context of s-process yields from asymptotic giant branch (AGB) stars, gigayear time delays in Ce enrichment of the interstellar medium, and the strong dependence of Ce nucleosynthesis on the metallicity of its AGB stellar sources.« less
  3. ABSTRACT

    We investigate stellar elemental abundance patterns at $z$ = 0 in eight low-mass ($M_{*}=10^{6}{-}10^{9}\ \text{M}_{\odot }$) galaxies in the Feedback in Realistic Environments cosmological simulations. Using magnesium (Mg) as a representative α-element, we explore stellar abundance patterns in magnesium-to-iron ([Mg/Fe]) versus iron-to-hydrogen ([Fe/H]), which follow an overall monotonic trend that evolved slowly over time. Additionally, we explore three notable secondary features in enrichment (in three different case-study galaxies) that arise from a galaxy merger or bursty star formation. First, we observe a secondary track with a lower [Mg/Fe] than the main trend. At $z$ = 0, stars from this track are predominantly found within 2–6 kpc of the centre; they were accreted in a 1:3 total-mass-ratio merger ∼0.4 Gyr ago. Second, we find a distinct elemental bimodality that forms following a strong burst in star formation in a galaxy at $t_{\text{lookback}}\, \sim 10$ Gyr. This burst quenched star formation for ∼0.66 Gyr, allowing Type Ia supernovae to enrich the system with iron (Fe) before star formation resumed. Third, we examine stripes in enrichment that run roughly orthogonal to the dominant [Mg/Fe] versus [Fe/H] trend; these stripes correspond to short bursts of star formation during which core-collapse supernovae enrich the surrounding medium with Mg (andmore »Fe) on short time-scales. If observed, these features would substantiate the utility of elemental abundances in revealing the assembly and star-formation histories of dwarf galaxies. We explore the observability of these features for upcoming spectroscopic studies. Our results show that precise measurements of elemental abundance patterns can reveal critical events in the formation histories of low-mass galaxies.

    « less
  4. ABSTRACT Using a sample of red giant stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16, we infer the conditional distribution $p([\alpha /{\rm Fe}]\, |\, [{\rm Fe}/{\rm H}])$ in the Milky Way disk for the α-elements Mg, O, Si, S, and Ca. In each bin of [Fe/H] and Galactocentric radius R, we model p([α/Fe]) as a sum of two Gaussians, representing ‘low-α’ and ‘high-α’ populations with scale heights $z_1=0.45\, {\rm kpc}$ and $z_2=0.95\, {\rm kpc}$, respectively. By accounting for age-dependent and z-dependent selection effects in APOGEE, we infer the [α/Fe] distributions that would be found for a fair sample of long-lived stars covering all z. Near the Solar circle, this distribution is bimodal at sub-solar [Fe/H], with the low-α and high-α peaks clearly separated by a minimum at intermediate [α/Fe]. In agreement with previous results, we find that the high-α population is more prominent at smaller R, lower [Fe/H], and larger |z|, and that the sequence separation is smaller for Si and Ca than for Mg, O, and S. We find significant intrinsic scatter in [α/Fe] at fixed [Fe/H] for both the low-α and high-α populations, typically ∼0.04-dex. The means, dispersions, and relative amplitudes of thismore »two-Gaussian description, and the dependence of these parameters on R, [Fe/H], and α-element, provide a quantitative target for chemical evolution models and a test for hydrodynamic simulations of disk galaxy formation. We argue that explaining the observed bimodality will probably require one or more sharp transitions in the disk’s gas accretion, star formation, or outflow history in addition to radial mixing of stellar populations.« less
  5. ABSTRACT Numerous studies of integrated starlight, stellar counts, and kinematics have confirmed that the Milky Way is a barred galaxy. However, far fewer studies have investigated the bar’s stellar population properties, which carry valuable independent information regarding the bar’s formation history. Here, we conduct a detailed analysis of chemical abundance distributions ([Fe/H] and [Mg/Fe]) in the on-bar and off-bar regions to study the azimuthal variation of star formation history (SFH) in the inner Galaxy. We find that the on-bar and off-bar stars at Galactocentric radii 3 kpc < rGC < 5 kpc have remarkably consistent [Fe/H] and [Mg/Fe] distribution functions and [Mg/Fe]–[Fe/H] relation, suggesting a common SFH shared by the long bar and the disc. In contrast, the bar and disc at smaller radii (2 kpc < rGC < 3 kpc) show noticeable differences, with relatively more very metal-rich ($\rm [Fe/H] \sim 0.4$) stars but fewer solar abundance stars in the bar. Given the three-phase star formation history proposed for the inner Galaxy in Lian et al., these differences could be explained by the off-bar disc having experienced either a faster early quenching process or recent metal-poor gas accretion. Vertical variations of the abundance distributions at small rGC suggest a wider vertical distribution of low-αmore »stars in the bar, which may serve as chemical evidence for vertical heating through the bar buckling process. The lack of such vertical variations outside the bulge may then suggest a lack of vertical heating in the long bar.« less