skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-pulsations in a microcavity Brillouin laser
We demonstrate a new, to the best of our knowledge, kind of self-pulsation in a microcavity Brillouin laser. This specific self-pulsation is generated by the interplay between the Brillouin lasing and the thermo-optic effect in an optical microcavity. Intriguingly, the self-pulsation behaviors are simultaneously present in both forward input pump and backward Brillouin lasing emission. By developing a coupled-mode theory, our numerical simulations display an excellent agreement with the experimental results.  more » « less
Award ID(s):
1806519 1741693
PAR ID:
10368589
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
47
Issue:
2
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 421
Size(s):
Article No. 421
Sponsoring Org:
National Science Foundation
More Like this
  1. We experimentally investigate spatiotemporal lasing dynamics in semiconductor microcavities with various geometries, featuring integrable or chaotic ray dynamics. The classical ray dynamics directly impacts the lasing dynamics, which is primarily determined by the local directionality of long-lived ray trajectories. The directionality of optical propagation dictates the characteristic length scales of intensity variations, which play a pivotal role in nonlinear light-matter interactions. While wavelength-scale intensity variations tend to stabilize lasing dynamics, modulation on much longer scales causes spatial filamentation and irregular pulsation. Our results will pave the way to control the lasing dynamics by engineering the cavity geometry and ray dynamical properties. 
    more » « less
  2. Abstract Laser-cooled gases of atoms interacting with the field of an optical cavity are a versatile tool for quantum sensing and the simulation of quantum systems. These systems can exhibit phenomena such as self-organization phase transitions, lasing mechanisms, squeezed states and protection of quantum coherence. However, investigations of these phenomena typically occur in a discontinuous manner due to the need to reload atomic ensembles. Here we demonstrate hours-long continuous lasing from laser-cooled88Sr atoms loaded into a ring cavity. The required inversion to produce lasing arises from inversion in the atomic-momentum degrees of freedom, which is linked to the self-organization phase transitions and collective atomic recoil lasing observed previously only in a cyclic fashion. We find that over a broad parameter range, the sensitivity of the lasing frequency to changes in cavity frequency is significantly reduced due to an atomic loss mechanism, suggesting a potential approach for mitigating low-frequency cavity noise. Our findings open opportunities for continuous cavity quantum electrodynamics experiments and robust and continuous super-radiant lasers. 
    more » « less
  3. Abstract Fluorescent proteins (FPs) have recently emerged as a serious contender for realizing ultralow threshold room temperature exciton–polariton condensation and lasing. This contribution investigates the thermalization of FP microcavity exciton–polaritons upon optical pumping under ambient conditions. Polariton cooling is realized using a new FP molecule, called mScarlet, coupled strongly to the optical modes in a Fabry–Pérot cavity. Interestingly, at the threshold excitation energy (fluence) of ≈9 nJ per pulse (15.6 mJ cm−2), an effective temperature is observed,Teff ≈ 350 ± 35 K close to the lattice temperature indicative of strongly thermalized exciton–polaritons at equilibrium. This efficient thermalization results from the interplay of radiative pumping facilitated by the energetics of the lower polariton branch and the cavityQ‐factor. Direct evidence for dramatic switching from an equilibrium state into a metastable state is observed for the organic cavity polariton device at room temperature via deviation from the Maxwell–Boltzmann statistics atk = 0 above the threshold. Thermalized polariton gases in organic systems at equilibrium hold substantial promise for designing room temperature polaritonic circuits, switches, and lattices for analog simulation. 
    more » « less
  4. Abstract Recent studies on exceptional points (EPs) in non-Hermitian optical systems have revealed unique traits, including unidirectional invisibility, chiral mode switching and laser self-termination. In systems featuring gain/loss components, EPs are commonly accessed below the lasing threshold, i.e., in the linear regime. In this work, we experimentally demonstrate that EP singularities in coupled semiconductor nanolasers can be accessed above the lasing threshold, where they become branch points of a nonlinear dynamical system. Contrary to the common belief that unavoidable cavity detuning impedes the formation of EPs, here we demonstrate that such detuning is necessary for compensating the carrier-induced frequency shift, hence restoring the EP. Furthermore, we find that the pump imbalance at lasing EPs varies with the total pump power, enabling their continuous tracking. This work uncovers the unstable nature of EPs above laser threshold in coupled semiconductor lasers, offering promising opportunities for the realization of self-pulsing nanolaser devices and frequency combs. 
    more » « less
  5. Evaporation patterns of liquid droplets containing nanoparticles or colloids have extensive applications in diagnostics and printing. Controlling these patterns by studying the evaporation behavior of colloidal droplets on surfaces is important for enhancing sensing platforms. In this study, A liquid‐repellent microcavity surface is introduced to robustly capture deposited analytic particles. The proposed microcavity surface maintains stable air pockets for liquid repellency and strong pinning for the spatial stabilization of the evaporating droplet, thereby resulting in a coffee‐ring concentration. This microcavity surface also acts as a “microcontainer” for the deposited particles, thereby protecting them against external damage. To demonstrate the multifaceted capabilities of microcavity surfaces, further comparison is done of three different surface structures, planar, micropillared, and that with microcavities in a hexagonal arrangement, by analyzing their evaporation dynamics and dried deposit patterns. The microcavity surface exhibits superior particle capture, thereby revealing its applicability in on‐site testing. Using the direct rapid sampling of analytical materials, the potential of the fabricated microcavity surface for point‐of‐care testing is demonstrated. The proposed microcavity surfaces suggest new avenues for the development of more robust and sensitive sensing platforms. 
    more » « less