skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Self-pulsations in a microcavity Brillouin laser

We demonstrate a new, to the best of our knowledge, kind of self-pulsation in a microcavity Brillouin laser. This specific self-pulsation is generated by the interplay between the Brillouin lasing and the thermo-optic effect in an optical microcavity. Intriguingly, the self-pulsation behaviors are simultaneously present in both forward input pump and backward Brillouin lasing emission. By developing a coupled-mode theory, our numerical simulations display an excellent agreement with the experimental results.

 
more » « less
Award ID(s):
1806519 1741693
PAR ID:
10368589
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
47
Issue:
2
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 421
Size(s):
Article No. 421
Sponsoring Org:
National Science Foundation
More Like this
  1. We experimentally investigate spatiotemporal lasing dynamics in semiconductor microcavities with various geometries, featuring integrable or chaotic ray dynamics. The classical ray dynamics directly impacts the lasing dynamics, which is primarily determined by the local directionality of long-lived ray trajectories. The directionality of optical propagation dictates the characteristic length scales of intensity variations, which play a pivotal role in nonlinear light-matter interactions. While wavelength-scale intensity variations tend to stabilize lasing dynamics, modulation on much longer scales causes spatial filamentation and irregular pulsation. Our results will pave the way to control the lasing dynamics by engineering the cavity geometry and ray dynamical properties. 
    more » « less
  2. Abstract

    GaAs‐AlGaAs based nanowire (NW) lasers hold great potential for on‐chip photonic applications, where lasing metrics have steadily improved over the years by optimizing resonator design and surface passivation methods. The factor that will ultimately limit the performance will depend on material properties, such as native‐ or impurity‐induced point defects and their impact on non‐radiative recombination. Here, the role of impurity‐induced point defects on the lasing performance of low‐threshold GaAs(Sb)‐AlGaAs NW‐lasers is evaluated, particularly by exploring Si‐dopants and their associated vacancy complexes. Si‐induced point defects and their self‐compensating nature are identified using correlated atom probe tomography, resonant Raman scattering, and photoluminescence experiments. Under pulsed optical excitation the lasing threshold is remarkably low (<10 µJ cm−2) and insensitive to impurity defects over a wide range of Si doping densities, while excess doping ([Si]>1019 cm−3) imposes increased threshold at low temperature. These characteristics coincide with increased Shockley‐Read‐Hall recombination, reflected by shorter carrier lifetimes, and reduced internal quantum efficiencies (IQE) . Remarkably, despite the lower IQE the presence of self‐compensating Si‐vacancy defects provides an improved temperature stability in lasing threshold with higher characteristic temperature and room‐temperature lasing. These findings highlight an overall large tolerance of lasing metrics to impurity defects in GaAs‐AlGaAs based NW‐lasers.

     
    more » « less
  3. Emerging cell-based regenerative medicine and stem cell therapies have drawn wide attention in medical research and clinical practice to treat tissue damage and numerous incurable diseases.In vivoobservation of the distribution, migration, and development of the transplanted cells is important for both understanding the mechanism and evaluating the treatment efficacy and safety. However, tracking the 3D migration trajectories for individual therapeutic cells in clinically relevant pathological environments remains technically challenging. Using a laser photocoagulation model in living rabbit eyes, this study demonstrates a multimodality imaging technology integrating optical coherence tomography (OCT), fluorescence microscopy (FM), and lasing emission forin vivolongitudinal tracking of the 3D migration trajectories of individual human retinal pigment epithelium cells (ARPE-19) labeled with CdS nanowires. With unique lasing spectra generated from the subtle microcavity differences, the surface-modified nanowires perform as distinct spectral identifiers for labeling individual ARPE-19 cells. Meanwhile, with strong optical scattering and natural fluorescence emission, CdS nanowires also served as OCT and FM contrast agents to indicate the spatial locations of the transplanted ARPE-19 cells. A longitudinal study of tracking individual ARPE-19 cells in rabbit eyes over a duration of 28 days was accomplished. This method could potentially promote an understanding of the pharmacodynamics and pharmacokinetics of implanted cells in the development of cell-based therapies.

     
    more » « less
  4. Abstract

    Fluorescent proteins (FPs) have recently emerged as a serious contender for realizing ultralow threshold room temperature exciton–polariton condensation and lasing. This contribution investigates the thermalization of FP microcavity exciton–polaritons upon optical pumping under ambient conditions. Polariton cooling is realized using a new FP molecule, called mScarlet, coupled strongly to the optical modes in a Fabry–Pérot cavity. Interestingly, at the threshold excitation energy (fluence) of ≈9 nJ per pulse (15.6 mJ cm−2), an effective temperature is observed,Teff ≈ 350 ± 35 K close to the lattice temperature indicative of strongly thermalized exciton–polaritons at equilibrium. This efficient thermalization results from the interplay of radiative pumping facilitated by the energetics of the lower polariton branch and the cavityQ‐factor. Direct evidence for dramatic switching from an equilibrium state into a metastable state is observed for the organic cavity polariton device at room temperature via deviation from the Maxwell–Boltzmann statistics atk = 0 above the threshold. Thermalized polariton gases in organic systems at equilibrium hold substantial promise for designing room temperature polaritonic circuits, switches, and lattices for analog simulation.

     
    more » « less
  5. Abstract

    Dissipative Kerr soliton (DKS) microcomb has emerged as an enabling technology that revolutionizes a wide range of applications in both basic science and technological innovation. Reliable turnkey operation with sub-optical-cycle and sub-femtosecond timing jitter is key to the success of many intriguing microcomb applications at the intersection of ultrafast optics and microwave electronics. Here we propose an approach and demonstrate the first turnkey Brillouin-DKS frequency comb to the best of our knowledge. Our microresonator-filtered laser design offers essential benefits, including phase insensitivity, self-healing capability, deterministic selection of the DKS state, and access to the ultralow noise comb state. The demonstrated turnkey Brillouin-DKS frequency comb achieves a fundamental comb linewidth of 100 mHz and DKS timing jitter of 1 femtosecond for averaging times up to 56 μs. The approach is universal and generalizable to various device platforms for user-friendly and field-deployable comb devices.

     
    more » « less