This Letter reports a femtosecond ultraviolet laser absorption spectroscopy (fs-UV-LAS) for simultaneous in situ measurements of temperature and species. This fs-UV-LAS technique was demonstrated based on X 2 Π-A 2 Σ + transitions of OH radicals near 308 nm generated in low temperature plasmas and flames. The fs-UV-LAS technique has revealed three major diagnostic benefits. First, a series of absorption features within a spectral bandwidth of ∼3.2 nm near 308 nm were simultaneously measured and then enabled simultaneous multi-parameter measurements with enhanced accuracy. The results show that the temperature and OH concentration could be measured with accuracy enhanced by 29–88% and 58–91%, respectively, compared to those obtained with past two-narrow-line absorption methods. Second, an ultrafast time resolution of ∼120 picoseconds was accomplished for the measurements. Third, due to the large OH X 2 Π-A 2 Σ + transitions in the UV range, a simple single-pass absorption with a 3-cm path length was allowed for measurements in plasmas with low OH number density down to ∼2 × 10 13 cm −3 . Also due to the large OH UV transitions, single-shot fs absorption measurements were accomplished in flames, which was expected to offer more insights into chemically reactive flow dynamics.
more »
« less
Sensitive and single-shot OH and temperature measurements by femtosecond cavity-enhanced absorption spectroscopy
In many low-temperature plasmas (LTPs), the OH radical and temperature represent key properties of plasma reactivity. However, OH and temperature measurements in weakly ionized LTPs are challenging, due to the low concentration and short lifetime of OH and the abrupt temperature rise caused by fast gas heating. To address such issues, this Letter combined cavity-enhanced absorption spectroscopy (CEAS) with femtosecond (fs) pulses to enable sensitive single-shot broadband measurements of OH and temperature with a time resolution of ∼180 ns in LTPs. Such a combination leveraged several benefits. With the appropriately designed cavity, an absorption gain of ∼66 was achieved, enhancing the actual OH detection limit by ∼55× to the 1011cm-3level (sub-ppm in this work) compared with single-pass absorption. Single-shot measurements were enabled while maintaining a time resolution of ∼180 ns, sufficiently short for detecting OH with a lifetime of ∼100 μs. With the broadband fs laser, ∼34,000 cavity modes were matched with ∼95 modes matched on each CCD pixel bandwidth, such that fs-CEAS became immune to the laser-cavity coupling noise and highly robust across the entire spectral range. Also, the broadband fs laser allowed simultaneous sensing of many absorption features to enable simultaneous multi-parameter measurements with enhanced accuracies.
more »
« less
- PAR ID:
- 10368699
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 47
- Issue:
- 13
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 3171
- Size(s):
- Article No. 3171
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Experiments accessing extreme conditions at x-ray free electron lasers (XFELs) involve rapidly evolving conditions of temperature. Here, we report time-resolved, direct measurements of temperature using spectral streaked optical pyrometry of x-ray and optical laser-heated states at the High Energy Density instrument of the European XFEL. This collection of typical experiments, coupled with numerical models, outlines the reliability, precision, and meaning of time dependent temperature measurements using optical emission at XFEL sources. Dynamic temperatures above 1500 K are measured continuously from spectrally- and temporally-resolved thermal emission at 450–850 nm, with time resolution down to 10–100 ns for 1–200 μs streak camera windows, using single shot and integrated modes. Targets include zero-pressure foils free-standing in air and in vacuo, and high-pressure samples compressed in diamond anvil cell multi-layer targets. Radiation sources used are 20-fs hard x-ray laser pulses at 17.8 keV, in single pulses or 2.26 MHz pulse trains of up to 30 pulses, and 250-ns infrared laser single pulses. A range of further possibilities for optical measurements of visible light in x-ray laser experiments using streak optical spectroscopy are also explored, including for the study of x-ray induced optical fluorescence, which often appears as background in thermal radiation measurements. We establish several scenarios where combined emissions from multiple sources are observed and discuss their interpretation. Challenges posed by using x-ray lasers as non-invasive probes of the sample state are addressed.more » « less
-
The high intrinsic polarity of many hydrides creates strong pure rotational absorption spectra in the THz domain. At high gas temperatures associated with reacting flows, pure rotational hydride spectra become active in the far-infrared and accessible with emerging semiconductor light sources. In this work, a pulsed far-IR quantum-cascade laser was utilized to probe rotational absorption lines of the hydroxyl radical (OH) and hydrogen fluoride (HF) in the reacting boundary layer of a solid fuel combustion experiment. Measurements targeted strong and isolated OH and HF transitions near 532cm−1(18.8µm), with a laser scanning range of ∼1.0cm−1sufficient to resolve both transitions within a single period. A mid-IR carbon monoxide line pair at 2008.5cm−1(4.98µm) provided complementary temperature measurements through two-line thermometry. Radially resolved temperature and species concentration were extracted through Tikhonov-regularized inversions of laser measurements across the exit plane of cylindrical fuel grains. This work demonstrates quantitative, spatially resolved measurements of key hydrides (OH and HF) in a high-temperature reacting boundary layer via far-infrared rotational laser absorption tomography.more » « less
-
The application of parity–time (PT) symmetry in optics, especially PT-symmetry breaking, has attracted considerable attention as an approach to controlling light propagation. Here, we report optical limiting by two coupled optical cavities with a PT-symmetric spectrum of reflectionless modes. The optical limiting is related to broken PT symmetry due to light-induced changes in one of the cavities. Our experimental implementation involves a three-mirror resonator of alternating layers of ZnS and cryolite with a PT-symmetric spectral degeneracy of two reflectionless modes. The passive optical limiting is demonstrated by measurements of single 532 nm 6 ns laser pulses and thermo-optical simulations. At fluences below 10mJ/cm2, the multilayer exhibits a flattop passband at 532 nm. At higher fluences, laser heating combined with the thermo-optic effect in ZnS leads to cavity detuning and PT-symmetry breaking of the reflectionless modes. As a result, the entire multilayer structure quickly becomes highly reflective, protecting itself from laser-induced damage. The cavity detuning mechanism can differ at much higher limiting thresholds and include nonlinearity.more » « less
-
This manuscript describes the first application of ultrafast-laser-absorption spectroscopy (ULAS) to characterizing high-pressure (up to 40 bar), multi-phase combustion gases. Single-shot measurements of temperature and CO were acquired at 5 kHz in AP-HTPB propellant flames with and without aluminum. An ultrafast light source was used to produce broadband pulses of light near 4.96 𝜇m at a repetition rate of 5 kHz and a high-speed mid-infrared imaging spectrometer was used to image the pulses across an 86 nm bandwidth with a spectral resolution of 0.7 nm. Measurements of temperature and CO concentration were obtained by least-squares fitting simulated absorbance spectra of CO to measured spectra. A system of corrective optics was used to diminish the e˙ect of beam steering during high-pressure experiments, greatly increasing the pressure capabilities of the diagnostic. The diagnostic was used to characterize AP-HTPB propellant flames in an argon bath gas at pressures of 1, 10, 20, and 40 bar. An aluminized AP-HTPB propellant was also characterized at 10 and 20 bar to demonstrate that ULAS can provide high-fidelity measurements in particulate-laden flames. The results demonstrate that ULAS is capable of providing single-shot temperature and species measurements at high pressures with 1-𝜎 precisions less than 1.1% and 3% for temperature and species respectively, despite non-absorbing transmission losses in excess of 90%.more » « less
An official website of the United States government
