Abstract Quantifying the size of earthquakes is a foundational task in seismology, and over the years several magnitude scales have been developed. Of these, only scales based on seismic moment or potency can properly characterize changes in event size without saturation. Here, we develop empirical potency–magnitude scaling relations for earthquakes in the western United States, allowing us to translate instrumental magnitude estimates into uniform measures of earthquake size. We use synthetic waveforms to validate the observed scaling relations and to provide additional insight into the differences between instrumental and physics-based magnitude scales. Each earthquake in our catalog is assigned a clustering designation distinguishing mainshocks from triggered seismicity, along with a potency-based magnitude estimate that is comparable to moment magnitude and that can be easily converted into other magnitude scales as needed. The developed catalog and associated scaling relations have broad applications for fundamental and applied studies of earthquake processes and hazards.
more »
« less
Invariant Galton–Watson branching process for earthquake occurrence
SUMMARY We propose a theoretical modelling framework for earthquake occurrence and clustering based on a family of invariant Galton–Watson (IGW) stochastic branching processes. The IGW process is a rigorously defined approximation to imprecisely observed or incorrectly estimated earthquake clusters modelled by Galton–Watson branching processes, including the Epidemic Type Aftershock Sequence (ETAS) model. The theory of IGW processes yields explicit distributions for multiple cluster attributes, including magnitude-dependent and magnitude-independent offspring number, cluster size and cluster combinatorial depth. Analysis of the observed seismicity in southern California demonstrates that the IGW model provides a close fit to the observed earthquake clusters. The estimated IGW parameters and derived statistics are robust with respect to the catalogue lower cut-off magnitude. The proposed model facilitates analyses of multiple quantities of seismicity based on self-similar tree attributes, and may be used to assess the proximity of seismicity to criticality.
more »
« less
- PAR ID:
- 10368736
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Geophysical Journal International
- Volume:
- 231
- Issue:
- 1
- ISSN:
- 0956-540X
- Format(s):
- Medium: X Size: p. 567-583
- Size(s):
- p. 567-583
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)SUMMARY We examine localization processes of low magnitude seismicity in relation to the occurrence of large earthquakes using three complementary analyses: (i) estimated production of rock damage by background events, (ii) evolving occupied fractional area of background seismicity and (iii) progressive coalescence of individual earthquakes into clusters. The different techniques provide information on different time scales and on the spatial extent of weakened damaged regions. Techniques (i) and (ii) use declustered catalogues to avoid the occasional strong fluctuations associated with aftershock sequences, while technique (iii) examines developing clusters in entire catalogue data. We analyse primarily earthquakes around large faults that are locked in the interseismic periods, and examine also as a contrasting example seismicity from the creeping Parkfield section of the San Andreas fault. Results of analysis (i) show that the M > 7 Landers 1992, Hector Mine 1999, El Mayor-Cucapah 2010 and Ridgecrest 2019 main shocks in Southern and Baja California were preceded in the previous decades by generation of rock damage around the eventual rupture zones. Analysis (ii) reveals localization (reduced fractional area) 2–3 yr before these main shocks and before the M > 7 Düzce 1999 earthquake in Turkey. Results with technique (iii) indicate that individual events tend to coalesce rapidly to clusters in the final 1–2 yr before the main shocks. Corresponding analyses of data from the Parkfield region show opposite delocalization patterns and decreasing clustering before the 2004 M6 earthquake. Continuing studies with these techniques, combined with analysis of geodetic data and insights from laboratory experiments and model simulations, might improve the ability to track preparation processes leading to large earthquakes.more » « less
-
Abstract Foreshocks can provide valuable information about possible nucleation process of a mainshock. However, their physical mechanisms are still under debate. In this study, we present a comprehensive analysis of the earthquake sequence preceding the 2010 Mw7.2 El Mayor‐Cucapah mainshock, including waveform detection of missing smaller events, relative relocation, and source parameter analysis. Based on a template matching method, we find a tenfold increase in the number of earthquakes than reported in the Southern California Seismic Network catalog. The entire sequence exhibits nearly continuous episodes of foreshocks that can be loosely separated into two active clusters. Relocated foreshocks show several seismicity streaks at depth, with a consistently active cluster at depths between 14 and 16 km where the mainshock was nucleated. Stress drop measurements from a spectral ratio approach based on empirical Green's functions show a range between 3.8 and 41.7 MPa with a median of 13.0 MPa and no clear temporal variations. The relocation results, together with the source patches estimated from earthquake corner frequencies, revealed a migration front toward the mainshock hypocenter within last 8 hr and a chain of active burst immediately 6 min prior to the mainshock. Our results support combined effects of aseismic slip and cascading failure on the evolution of foreshocks.more » « less
-
Abstract Induced seismicity observed during Enhanced Geothermal Stimulation at Otaniemi, Finland is modeled using both statistical and physical approaches. The physical model produces simulations closest to the observations when assuming rate‐and‐state friction for shear failure with diffusivity matching the pressure build‐up at the well‐head at onset of injections. Rate‐and‐state friction implies a time‐dependent earthquake nucleation process which is found to be essential in reproducing the spatial pattern of seismicity. This implies that permeability inferred from the expansion of the seismicity triggering front (Shapiro et al., 1997,https://doi.org/10.1111/j.1365-246x.1997.tb01215.x) can be biased. We suggest a heuristic method to account for this bias that is independent of the earthquake magnitude detection threshold. Our modeling suggests that the Omori law decay during injection shut‐ins results mainly from stress relaxation by pore pressure diffusion. During successive stimulations, seismicity should only be induced where the previous maximum of Coulomb stress changes is exceeded. This effect, commonly referred to as the Kaiser effect, is not clearly visible in the data from Otaniemi. The different injection locations at the various stimulation stages may have resulted in sufficiently different effective stress distributions that the effect was muted. We describe a statistical model whereby seismicity rate is estimated from convolution of the injection history with a kernel which approximates earthquake triggering by fluid diffusion. The statistical method has superior computational efficiency to the physical model and fits the observations as well as the physical model. This approach is applicable provided the Kaiser effect is not strong, as was the case in Otaniemi.more » « less
-
Both large and small earthquakes rupture in complex ways. However, microearthquakes are often simplified as point sources and their rupture properties are challenging to resolve. We leverage seismic wavefields recorded by a dense array in Oklahoma to image microearthquake rupture processes. We construct machine-learning enabled catalogs and identify four spatially disconnected seismic clusters. These clusters likely delineate near-vertical strike-slip faults. We develop a new approach to use the maximum absolute SH-wave amplitude distributions (S-wave wavefields) to compare microearthquake rupture processes. We focus on one cluster with earthquakes located beneath the dense array and have a local magnitude range of -1.3 to 2.3. The S-wave wavefields of single earthquakes are generally coherent but differ slightly between the low-frequency (<12 Hz) and high-frequency (>12 Hz) bands. The S-wave wavefields are coherent between different earthquakes at low frequencies with average correlation coefficients greater than 0.95. However, the wavefield coherence decreases with increasing frequency for different earthquakes. This reduced coherence is likely due to the rupture differences among individual earthquakes. Our results suggest that earthquake slip of the microearthquakes dominates the radiated S-wave wavefields at higher frequencies. Our method suggests a new direction in resolving small earthquake source attributes using dense seismic arrays without assuming a rupture model.more » « less
An official website of the United States government
