skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Invariant Galton–Watson branching process for earthquake occurrence
SUMMARY We propose a theoretical modelling framework for earthquake occurrence and clustering based on a family of invariant Galton–Watson (IGW) stochastic branching processes. The IGW process is a rigorously defined approximation to imprecisely observed or incorrectly estimated earthquake clusters modelled by Galton–Watson branching processes, including the Epidemic Type Aftershock Sequence (ETAS) model. The theory of IGW processes yields explicit distributions for multiple cluster attributes, including magnitude-dependent and magnitude-independent offspring number, cluster size and cluster combinatorial depth. Analysis of the observed seismicity in southern California demonstrates that the IGW model provides a close fit to the observed earthquake clusters. The estimated IGW parameters and derived statistics are robust with respect to the catalogue lower cut-off magnitude. The proposed model facilitates analyses of multiple quantities of seismicity based on self-similar tree attributes, and may be used to assess the proximity of seismicity to criticality.  more » « less
Award ID(s):
1723033 2122191 1722561 2122168
PAR ID:
10368736
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
231
Issue:
1
ISSN:
0956-540X
Format(s):
Medium: X Size: p. 567-583
Size(s):
p. 567-583
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    SUMMARY We examine localization processes of low magnitude seismicity in relation to the occurrence of large earthquakes using three complementary analyses: (i) estimated production of rock damage by background events, (ii) evolving occupied fractional area of background seismicity and (iii) progressive coalescence of individual earthquakes into clusters. The different techniques provide information on different time scales and on the spatial extent of weakened damaged regions. Techniques (i) and (ii) use declustered catalogues to avoid the occasional strong fluctuations associated with aftershock sequences, while technique (iii) examines developing clusters in entire catalogue data. We analyse primarily earthquakes around large faults that are locked in the interseismic periods, and examine also as a contrasting example seismicity from the creeping Parkfield section of the San Andreas fault. Results of analysis (i) show that the M > 7 Landers 1992, Hector Mine 1999, El Mayor-Cucapah 2010 and Ridgecrest 2019 main shocks in Southern and Baja California were preceded in the previous decades by generation of rock damage around the eventual rupture zones. Analysis (ii) reveals localization (reduced fractional area) 2–3 yr before these main shocks and before the M > 7 Düzce 1999 earthquake in Turkey. Results with technique (iii) indicate that individual events tend to coalesce rapidly to clusters in the final 1–2 yr before the main shocks. Corresponding analyses of data from the Parkfield region show opposite delocalization patterns and decreasing clustering before the 2004 M6 earthquake. Continuing studies with these techniques, combined with analysis of geodetic data and insights from laboratory experiments and model simulations, might improve the ability to track preparation processes leading to large earthquakes. 
    more » « less
  2. Abstract Foreshocks can provide valuable information about possible nucleation process of a mainshock. However, their physical mechanisms are still under debate. In this study, we present a comprehensive analysis of the earthquake sequence preceding the 2010 Mw7.2 El Mayor‐Cucapah mainshock, including waveform detection of missing smaller events, relative relocation, and source parameter analysis. Based on a template matching method, we find a tenfold increase in the number of earthquakes than reported in the Southern California Seismic Network catalog. The entire sequence exhibits nearly continuous episodes of foreshocks that can be loosely separated into two active clusters. Relocated foreshocks show several seismicity streaks at depth, with a consistently active cluster at depths between 14 and 16 km where the mainshock was nucleated. Stress drop measurements from a spectral ratio approach based on empirical Green's functions show a range between 3.8 and 41.7 MPa with a median of 13.0 MPa and no clear temporal variations. The relocation results, together with the source patches estimated from earthquake corner frequencies, revealed a migration front toward the mainshock hypocenter within last 8 hr and a chain of active burst immediately 6 min prior to the mainshock. Our results support combined effects of aseismic slip and cascading failure on the evolution of foreshocks. 
    more » « less
  3. Abstract Induced seismicity observed during Enhanced Geothermal Stimulation at Otaniemi, Finland is modeled using both statistical and physical approaches. The physical model produces simulations closest to the observations when assuming rate‐and‐state friction for shear failure with diffusivity matching the pressure build‐up at the well‐head at onset of injections. Rate‐and‐state friction implies a time‐dependent earthquake nucleation process which is found to be essential in reproducing the spatial pattern of seismicity. This implies that permeability inferred from the expansion of the seismicity triggering front (Shapiro et al., 1997,https://doi.org/10.1111/j.1365-246x.1997.tb01215.x) can be biased. We suggest a heuristic method to account for this bias that is independent of the earthquake magnitude detection threshold. Our modeling suggests that the Omori law decay during injection shut‐ins results mainly from stress relaxation by pore pressure diffusion. During successive stimulations, seismicity should only be induced where the previous maximum of Coulomb stress changes is exceeded. This effect, commonly referred to as the Kaiser effect, is not clearly visible in the data from Otaniemi. The different injection locations at the various stimulation stages may have resulted in sufficiently different effective stress distributions that the effect was muted. We describe a statistical model whereby seismicity rate is estimated from convolution of the injection history with a kernel which approximates earthquake triggering by fluid diffusion. The statistical method has superior computational efficiency to the physical model and fits the observations as well as the physical model. This approach is applicable provided the Kaiser effect is not strong, as was the case in Otaniemi. 
    more » « less
  4. SUMMARY A number of recent modelling studies of induced seismicity have used the 1994 rate-and-state friction model of Dieterich 1994 to account for the fact that earthquake nucleation is not instantaneous. Notably, the model assumes a population of seismic sources accelerating towards instability with a distribution of initial slip speeds such that they would produce earthquakes steadily in the absence of any perturbation to the system. This assumption may not be valid in typical intraplate settings where most examples of induced seismicity occur, since these regions have low stressing rates and initially low seismic activity. The goal of this paper is twofold. First, to derive a revised Coulomb rate-and-state model, which takes into account that seismic sources can be initially far from instability. Second, to apply and test this new model, called the Threshold rate-and-state model, on the induced seismicity of the Groningen gas field in the Netherlands. Stress changes are calculated based on a model of reservoir compaction since the onset of gas production. We next compare the seismicity predicted by our threshold model and Dieterich’s model with the observations. The two models yields comparable spatial distributions of earthquakes in good agreement with the observations. We find however that the Threshold model provides a better fit to the observed time-varying seismicity rate than Dieterich’s model, and reproduces better the onset, peak and decline of the observed seismicity rate. We compute the maximum magnitude expected for each model given the Gutenberg–Richter distribution and compare to the observations. We find that the Threshold model both shows better agreement with the observed maximum magnitude and provides result consistent with lack of observed seismicity prior to 1993. We carry out analysis of the model fit using a Chi-squared reduced statistics and find that the model fit is dramatically improved by smoothing the seismicity rate. We interpret this finding as possibly suggesting an influence of source interactions, or clustering, on a long timescale of about 3–5 yr. 
    more » « less
  5. Both large and small earthquakes rupture in complex ways. However, microearthquakes are often simplified as point sources and their rupture properties are challenging to resolve. We leverage seismic wavefields recorded by a dense array in Oklahoma to image microearthquake rupture processes. We construct machine-learning enabled catalogs and identify four spatially disconnected seismic clusters. These clusters likely delineate near-vertical strike-slip faults. We develop a new approach to use the maximum absolute SH-wave amplitude distributions (S-wave wavefields) to compare microearthquake rupture processes. We focus on one cluster with earthquakes located beneath the dense array and have a local magnitude range of -1.3 to 2.3. The S-wave wavefields of single earthquakes are generally coherent but differ slightly between the low-frequency (<12 Hz) and high-frequency (>12 Hz) bands. The S-wave wavefields are coherent between different earthquakes at low frequencies with average correlation coefficients greater than 0.95. However, the wavefield coherence decreases with increasing frequency for different earthquakes. This reduced coherence is likely due to the rupture differences among individual earthquakes. Our results suggest that earthquake slip of the microearthquakes dominates the radiated S-wave wavefields at higher frequencies. Our method suggests a new direction in resolving small earthquake source attributes using dense seismic arrays without assuming a rupture model. 
    more » « less