skip to main content


Title: Pharmacological affinity fingerprints derived from bioactivity data for the identification of designer drugs
Abstract

Facing the continuous emergence of new psychoactive substances (NPS) and their threat to public health, more effective methods for NPS prediction and identification are critical. In this study, the pharmacological affinity fingerprints (Ph-fp) of NPS compounds were predicted by Random Forest classification models using bioactivity data from the ChEMBL database. The binaryPh-fpis the vector consisting of a compound’s activity against a list of molecular targets reported to be responsible for the pharmacological effects of NPS. Their performance in similarity searching and unsupervised clustering was assessed and compared to 2D structure fingerprints Morgan and MACCS (1024-bits ECFP4 and 166-bits SMARTS-based MACCS implementation of RDKit). The performance in retrieving compounds according to their pharmacological categorizations is influenced by the predicted active assay counts inPh-fpand the choice of similarity metric. Overall, the comparative unsupervised clustering analysis suggests the use of a classification model with Morgan fingerprints as input for the construction ofPh-fp. This combination gives satisfactory clustering performance based on external and internal clustering validation indices.

 
more » « less
Award ID(s):
2018427
NSF-PAR ID:
10368740
Author(s) / Creator(s):
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Cheminformatics
Volume:
14
Issue:
1
ISSN:
1758-2946
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset contains sequence information, three-dimensional structures (from AlphaFold2 model), and substrate classification labels for 358 short-chain dehydrogenase/reductases (SDRs) and 953 S-adenosylmethionine dependent methyltransferases (SAM-MTases).

    The aminoacid sequences of these enzymes were obtained from the UniProt Knowledgebase (https://www.uniprot.org). The sets of proteins were obtained by querying using InterPro protein family/domain identifiers corresponding to each family: IPR002347 (SDRs) and IPR029063 (SAM-MTases). The query results were filtered by UniProt annotation score, keeping only those with score above 4-out-of-5, and deduplicated by exact sequence matches.

    The structures were submitted to the publicly available AlphaFold2 protein structure predictor (J. Jumper et al., Nature, 2021, 596, 583) using the ColabFold notebook (https://colab.research.google.com/github/sokrypton/ColabFold/blob/v1.1-premultimer/batch/AlphaFold2_batch.ipynb, M. Mirdita, S. Ovchinnikov, M. Steinegger, Nature Meth., 2022, 19, 679, https://github.com/sokrypton/ColabFold). The model settings used were  msa_model = MMSeq2(Uniref+Environmental), num_models = 1, use_amber = False, use_templates = True, do_not_overwrite_results = True. The resulting PDB structures are included as ZIP archives

    The classification labels were obtained from the substrate and product annotations of the enzyme UniProtKB records. Two approaches were used: substrate clustering based on molecular fingerprints and manual substrate type classification. For the substate clustering, Morgan fingerprints were generated for all enzymatic substrates and products with known structures (excluding cofactors) with radius = 3 using RDKit (https://rdkit.org). The fingerprints were projected onto two-dimensional space using the UMAP algorithm (L. McInnes, J. Healy, 2018, arXiv 1802.03426) and Jaccard metric and clustered using k-means. This procedure generated 9 clusters for SDR substrates and 13 clusters for SAM-MTases. The SMILES representations of the substrates are listed in the SDR_substrates_to_cluster_map_2DIMUMAP.csv and SAM_substrates_to_13clusters_map_2DIMUMAP.csv files.


    The following manually defined classification tasks are included for SDRs: NADP/NAD cofactor classification; phenol substrate, sterol substrate, coenzyme A (CoA) substrate. For SAM-MTases, the manually defined classification tasks are: biopolymer (protein/RNA/DNA) vs. small molecule substrate, phenol subsrates, sterol substrates, nitrogen heterocycle substrates. The SMARTS strings used to define the substrate classes are listed in substructure_search_SMARTS.docx.
     

     
    more » « less
  2. Abstract

    Cluster analysis remains one of the most challenging yet fundamental tasks in unsupervised learning. This is due in part to the fact that there are no labels or gold standards by which performance can be measured. Moreover, the wide range of clustering methods available is governed by different objective functions, different parameters, and dissimilarity measures. The purpose of clustering is versatile, often playing critical roles in the early stages of exploratory data analysis and as an endpoint for knowledge and discovery. Thus, understanding the quality of a clustering is of critical importance. The concept ofstabilityhas emerged as a strategy for assessing the performance and reproducibility of data clustering. The key idea is to produce perturbed data sets that are very close to the original, and cluster them. If the clustering is stable, then the clusters from the original data will be preserved in the perturbed data clustering. The nature of the perturbation, and the methods for quantifying similarity between clusterings, are nontrivial, and ultimately what distinguishes many of the stability estimation methods apart. In this review, we provide an overview of the very active research area of cluster stability estimation and discuss some of the open questions and challenges that remain in the field.

    This article is categorized under:

    Statistical Learning and Exploratory Methods of the Data Sciences > Clustering and Classification

     
    more » « less
  3. Abstract

    There is demand for scalable algorithms capable of clustering and analyzing large time series data. The Kohonen self-organizing map (SOM) is an unsupervised artificial neural network for clustering, visualizing, and reducing the dimensionality of complex data. Like all clustering methods, it requires a measure of similarity between input data (in this work time series). Dynamic time warping (DTW) is one such measure, and a top performer that accommodates distortions when aligning time series. Despite its popularity in clustering, DTW is limited in practice because the runtime complexity is quadratic with the length of the time series. To address this, we present a new a self-organizing map for clustering TIME Series, called SOMTimeS, which uses DTW as the distance measure. The method has similar accuracy compared with other DTW-based clustering algorithms, yet scales better and runs faster. The computational performance stems from the pruning of unnecessary DTW computations during the SOM’s training phase. For comparison, we implement a similar pruning strategy for K-means, and call the latter K-TimeS. SOMTimeS and K-TimeS pruned 43% and 50% of the total DTW computations, respectively. Pruning effectiveness, accuracy, execution time and scalability are evaluated using 112 benchmark time series datasets from the UC Riverside classification archive, and show that for similar accuracy, a 1.8$$\times$$×speed-up on average for SOMTimeS and K-TimeS, respectively with that rates vary between 1$$\times$$×and 18$$\times$$×depending on the dataset. We also apply SOMTimeS to a healthcare study of patient-clinician serious illness conversations to demonstrate the algorithm’s utility with complex, temporally sequenced natural language.

     
    more » « less
  4. null (Ed.)
    Abstract In this study, we developed a novel algorithm to improve the screening performance of an arbitrary docking scoring function by recalibrating the docking score of a query compound based on its structure similarity with a set of training compounds, while the extra computational cost is neglectable. Two popular docking methods, Glide and AutoDock Vina were adopted as the original scoring functions to be processed with our new algorithm and similar improvement performance was achieved. Predicted binding affinities were compared against experimental data from ChEMBL and DUD-E databases. 11 representative drug receptors from diverse drug target categories were applied to evaluate the hybrid scoring function. The effects of four different fingerprints (FP2, FP3, FP4, and MACCS) and the four different compound similarity effect (CSE) functions were explored. Encouragingly, the screening performance was significantly improved for all 11 drug targets especially when CSE = S 4 (S is the Tanimoto structural similarity) and FP2 fingerprint were applied. The average predictive index (PI) values increased from 0.34 to 0.66 and 0.39 to 0.71 for the Glide and AutoDock vina scoring functions, respectively. To evaluate the performance of the calibration algorithm in drug lead identification, we also imposed an upper limit on the structural similarity to mimic the real scenario of screening diverse libraries for which query ligands are general-purpose screening compounds and they are not necessarily structurally similar to reference ligands. Encouragingly, we found our hybrid scoring function still outperformed the original docking scoring function. The hybrid scoring function was further evaluated using external datasets for two systems and we found the PI values increased from 0.24 to 0.46 and 0.14 to 0.42 for A2AR and CFX systems, respectively. In a conclusion, our calibration algorithm can significantly improve the virtual screening performance in both drug lead optimization and identification phases with neglectable computational cost. 
    more » « less
  5. null (Ed.)
    Abstract This paper introduces the use of topological data analysis (TDA) as an unsupervised machine learning tool to uncover classification criteria in complex inorganic crystal chemistries. Using the apatite chemistry as a template, we track through the use of persistent homology the topological connectivity of input crystal chemistry descriptors on defining similarity between different stoichiometries of apatites. It is shown that TDA automatically identifies a hierarchical classification scheme within apatites based on the commonality of the number of discrete coordination polyhedra that constitute the structural building units common among the compounds. This information is presented in the form of a visualization scheme of a barcode of homology classifications, where the persistence of similarity between compounds is tracked. Unlike traditional perspectives of structure maps, this new “Materials Barcode” schema serves as an automated exploratory machine learning tool that can uncover structural associations from crystal chemistry databases, as well as to achieve a more nuanced insight into what defines similarity among homologous compounds. 
    more » « less