skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pharmacological affinity fingerprints derived from bioactivity data for the identification of designer drugs
Abstract Facing the continuous emergence of new psychoactive substances (NPS) and their threat to public health, more effective methods for NPS prediction and identification are critical. In this study, the pharmacological affinity fingerprints (Ph-fp) of NPS compounds were predicted by Random Forest classification models using bioactivity data from the ChEMBL database. The binaryPh-fpis the vector consisting of a compound’s activity against a list of molecular targets reported to be responsible for the pharmacological effects of NPS. Their performance in similarity searching and unsupervised clustering was assessed and compared to 2D structure fingerprints Morgan and MACCS (1024-bits ECFP4 and 166-bits SMARTS-based MACCS implementation of RDKit). The performance in retrieving compounds according to their pharmacological categorizations is influenced by the predicted active assay counts inPh-fpand the choice of similarity metric. Overall, the comparative unsupervised clustering analysis suggests the use of a classification model with Morgan fingerprints as input for the construction ofPh-fp. This combination gives satisfactory clustering performance based on external and internal clustering validation indices.  more » « less
Award ID(s):
2018427
PAR ID:
10368740
Author(s) / Creator(s):
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Cheminformatics
Volume:
14
Issue:
1
ISSN:
1758-2946
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In this study, we developed a novel algorithm to improve the screening performance of an arbitrary docking scoring function by recalibrating the docking score of a query compound based on its structure similarity with a set of training compounds, while the extra computational cost is neglectable. Two popular docking methods, Glide and AutoDock Vina were adopted as the original scoring functions to be processed with our new algorithm and similar improvement performance was achieved. Predicted binding affinities were compared against experimental data from ChEMBL and DUD-E databases. 11 representative drug receptors from diverse drug target categories were applied to evaluate the hybrid scoring function. The effects of four different fingerprints (FP2, FP3, FP4, and MACCS) and the four different compound similarity effect (CSE) functions were explored. Encouragingly, the screening performance was significantly improved for all 11 drug targets especially when CSE = S 4 (S is the Tanimoto structural similarity) and FP2 fingerprint were applied. The average predictive index (PI) values increased from 0.34 to 0.66 and 0.39 to 0.71 for the Glide and AutoDock vina scoring functions, respectively. To evaluate the performance of the calibration algorithm in drug lead identification, we also imposed an upper limit on the structural similarity to mimic the real scenario of screening diverse libraries for which query ligands are general-purpose screening compounds and they are not necessarily structurally similar to reference ligands. Encouragingly, we found our hybrid scoring function still outperformed the original docking scoring function. The hybrid scoring function was further evaluated using external datasets for two systems and we found the PI values increased from 0.24 to 0.46 and 0.14 to 0.42 for A2AR and CFX systems, respectively. In a conclusion, our calibration algorithm can significantly improve the virtual screening performance in both drug lead optimization and identification phases with neglectable computational cost. 
    more » « less
  2. Pesticides benefit agriculture by increasing crop yield, quality, and security. However, pesticides may inadvertently harm bees, which are valuable as pollinators. Thus, candidate pesticides in development pipelines must be assessed for toxicity to bees. Leveraging a dataset of 382 molecules with toxicity labels from honey bee exposure experiments, we train a support vector machine (SVM) to predict the toxicity of pesticides to honey bees. We compare two representations of the pesticide molecules: (i) a random walk feature vector listing counts of length- L walks on the molecular graph with each vertex- and edge-label sequence and (ii) the Molecular ACCess System (MACCS) structural key fingerprint (FP), a bit vector indicating the presence/absence of a list of pre-defined subgraph patterns in the molecular graph. We explicitly construct the MACCS FPs but rely on the fixed-length- L random walk graph kernel (RWGK) in place of the dot product for the random walk representation. The L-RWGK-SVM achieves an accuracy, precision, recall, and F1 score (mean over 2000 runs) of 0.81, 0.68, 0.71, and 0.69, respectively, on the test data set—with L = 4 being the mode optimal walk length. The MACCS-FP-SVM performs on par/marginally better than the L-RWGK-SVM, lends more interpretability, but varies more in performance. We interpret the MACCS-FP-SVM by illuminating which subgraph patterns in the molecules tend to strongly push them toward the toxic/non-toxic side of the separating hyperplane. 
    more » « less
  3. This dataset contains sequence information, three-dimensional structures (from AlphaFold2 model), and substrate classification labels for 358 short-chain dehydrogenase/reductases (SDRs) and 953 S-adenosylmethionine dependent methyltransferases (SAM-MTases).</p> The aminoacid sequences of these enzymes were obtained from the UniProt Knowledgebase (https://www.uniprot.org). The sets of proteins were obtained by querying using InterPro protein family/domain identifiers corresponding to each family: IPR002347 (SDRs) and IPR029063 (SAM-MTases). The query results were filtered by UniProt annotation score, keeping only those with score above 4-out-of-5, and deduplicated by exact sequence matches.</p> The structures were submitted to the publicly available AlphaFold2 protein structure predictor (J. Jumper et al., Nature, 2021, 596, 583) using the ColabFold notebook (https://colab.research.google.com/github/sokrypton/ColabFold/blob/v1.1-premultimer/batch/AlphaFold2_batch.ipynb, M. Mirdita, S. Ovchinnikov, M. Steinegger, Nature Meth., 2022, 19, 679, https://github.com/sokrypton/ColabFold). The model settings used were  msa_model = MMSeq2(Uniref+Environmental), num_models = 1, use_amber = False, use_templates = True, do_not_overwrite_results = True. The resulting PDB structures are included as ZIP archives</p> The classification labels were obtained from the substrate and product annotations of the enzyme UniProtKB records. Two approaches were used: substrate clustering based on molecular fingerprints and manual substrate type classification. For the substate clustering, Morgan fingerprints were generated for all enzymatic substrates and products with known structures (excluding cofactors) with radius = 3 using RDKit (https://rdkit.org). The fingerprints were projected onto two-dimensional space using the UMAP algorithm (L. McInnes, J. Healy, 2018, arXiv 1802.03426) and Jaccard metric and clustered using k-means. This procedure generated 9 clusters for SDR substrates and 13 clusters for SAM-MTases. The SMILES representations of the substrates are listed in the SDR_substrates_to_cluster_map_2DIMUMAP.csv and SAM_substrates_to_13clusters_map_2DIMUMAP.csv files.</p> The following manually defined classification tasks are included for SDRs: NADP/NAD cofactor classification; phenol substrate, sterol substrate, coenzyme A (CoA) substrate. For SAM-MTases, the manually defined classification tasks are: biopolymer (protein/RNA/DNA) vs. small molecule substrate, phenol subsrates, sterol substrates, nitrogen heterocycle substrates. The SMARTS strings used to define the substrate classes are listed in substructure_search_SMARTS.docx.  </p> 
    more » « less
  4. Abstract A machine learning-based drug screening technique has been developed and optimized using convolutional neural network-derived fingerprints. The optimization of weights in the neural network-based fingerprinting technique was compared with fixed Morgan fingerprints in regard to binary classification on drug-target binding affinity. The assessment was carried out using six different target proteins using randomly chosen small molecules from the ZINC15 database for training. This new architecture proved to be more efficient in screening molecules that less favorably bind to specific targets and retaining molecules that favorably bind to it. Scientific contribution We have developed a new neural fingerprint-based screening model that has a significant ability to capture hits. Despite using a smaller dataset, this model is capable of mapping chemical space similar to other contemporary algorithms designed for molecular screening. The novelty of the present algorithm lies in the speed with which the models are trained and tuned before testing its predictive capabilities and hence is a significant step forward in the field of machine learning-embedded computational drug discovery. 
    more » « less
  5. null (Ed.)
    Abstract This paper introduces the use of topological data analysis (TDA) as an unsupervised machine learning tool to uncover classification criteria in complex inorganic crystal chemistries. Using the apatite chemistry as a template, we track through the use of persistent homology the topological connectivity of input crystal chemistry descriptors on defining similarity between different stoichiometries of apatites. It is shown that TDA automatically identifies a hierarchical classification scheme within apatites based on the commonality of the number of discrete coordination polyhedra that constitute the structural building units common among the compounds. This information is presented in the form of a visualization scheme of a barcode of homology classifications, where the persistence of similarity between compounds is tracked. Unlike traditional perspectives of structure maps, this new “Materials Barcode” schema serves as an automated exploratory machine learning tool that can uncover structural associations from crystal chemistry databases, as well as to achieve a more nuanced insight into what defines similarity among homologous compounds. 
    more » « less