Spider pulsars are compact binary systems composed of a millisecond pulsar and a low-mass companion. Their X-ray emission – modulated on the orbital period – is interpreted as synchrotron radiation from high-energy electrons accelerated at the intrabinary shock. We perform global two-dimensional particle-in-cell simulations of the intrabinary shock, assuming that the shock wraps around the companion star. When the pulsar spin axis is nearly aligned with the orbital angular momentum, we find that the magnetic energy of the relativistic pulsar wind – composed of magnetic stripes of alternating field polarity – efficiently converts to particle energy at the intrabinary shock, via shock-driven reconnection. The highest energy particles accelerated by reconnection can stream ahead of the shock and be further accelerated by the upstream motional electric field. In the downstream, further energization is governed by stochastic interactions with the plasmoids/magnetic islands generated by reconnection. We also extend our earlier work by performing simulations that have a larger (and more realistic) companion size and a more strongly magnetized pulsar wind. We confirm that our first-principles synchrotron spectra and light curves are in good agreement with X-ray observations.
Spider pulsars are compact binary systems composed of a millisecond pulsar and a low-mass companion. The relativistic magnetically dominated pulsar wind impacts onto the companion, ablating it and slowly consuming its atmosphere. The interaction forms an intrabinary shock, a proposed site of particle acceleration. We perform global fully kinetic particle-in-cell simulations of the intrabinary shock, assuming that the pulsar wind consists of plane-parallel stripes of alternating polarity and that the shock wraps around the companion. We find that particles are efficiently accelerated via shock-driven reconnection. We extract first-principles synchrotron spectra and light curves, which are in good agreement with X-ray observations: (1) the synchrotron spectrum is nearly flat,
- Award ID(s):
- 1903412
- NSF-PAR ID:
- 10368899
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 933
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 140
- Size(s):
- Article No. 140
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract In so-called spider pulsars, the X-ray band is dominated by intrabinary shock (IBS) synchrotron emission. While the double-peaked X-ray light curves from these shocks have been well characterized in several spider systems (both black widows and redbacks), the polarization of this emission is yet to be studied. Motivated by the new polarization capability of the Imaging X-ray Polarization Explorer and the confirmation of highly ordered magnetic fields in pulsar wind nebulae, we model the IBS polarization by employing two potential magnetic field configurations: toroidal magnetic fields imposed by the preshock pulsar wind, and tangential shock-generated fields that follow the postshock flow. We find that if IBSs host ordered magnetic fields, the synchrotron X-rays from spider binaries can display a high degree of polarization (≳50%), while the variation in polarization angle provides a good probe of the binary geometry and the magnetic field structure. Our results encourage observational polarization studies of spider pulsars that can distinguish the proposed magnetic models and that constrain the unique properties of these systems better.
-
Abstract Pulsars in binary systems with strong companion winds can have the magnetopause separating their magnetosphere from the wind located well within their light cylinder. This bow-like enclosure effectively creates a waveguide that confines the pulsar’s electromagnetic fields and can significantly alter its spindown. In this paper, we study the spindown of compressed pulsar magnetospheres in such systems. We parameterize the confinement as the ratio between the equatorial position of the magnetopause (or standoff distance)
R mand the pulsar’s light cylinderR LC. Using particle-in-cell simulations, we quantify the pulsar spindown for a range of compressions,R m/R LC= 1/3–1, and inclination angles,χ = 0°…90°, between magnetic and rotation axes. Our strongly confined models (R m/R LC= 1/3) show two distinct limits. Forχ = 0°, the spindown of a compressed pulsar magnetosphere is enhanced by approximately a factor of three compared to an isolated pulsar due to the increased number of open magnetic field lines. Conversely, forχ = 90°, the compressed pulsar spins down at less than 40% of the rate of an isolated reference pulsar due to the mismatch between the pulsar wind stripe wavelength and the waveguide size. We apply our analysis to the 2.77 s oblique rotator (χ = 60°) in the double-pulsar system PSR J0737-3039. With the numerically derived spindown estimate, we constrain its surface magnetic field toB *≈ (7.3 ± 0.2) × 1011G. We discuss the time modulation of its period derivative, the effects of compression on its braking index, and implications for the radio eclipse in PSR J0737-3039. -
Abstract HESS J0632+057 belongs to a rare subclass of binary systems that emit gamma rays above 100 GeV. It stands out for its distinctive high-energy light curve, which features a sharp “primary” peak and broader “secondary” peak. We present the results of contemporaneous observations by NuSTAR and VERITAS during the secondary peak between 2019 December and 2020 February, when the orbital phase ( ϕ ) is between 0.55 and 0.75. NuSTAR detected X-ray spectral evolution, while VERITAS detected TeV emission. We fit a leptonic wind-collision model to the multiwavelength spectra data obtained over the four NuSTAR and VERITAS observations, constraining the pulsar spin-down luminosity and the magnetization parameter at the shock. Despite long-term monitoring of the source from 2019 October to 2020 March, the MDM observatory did not detect significant variation in H α and H β line equivalent widths, an expected signature of Be-disk interaction with the pulsar. Furthermore, fitting folded Swift-XRT light-curve data with an intrabinary shock model constrained the orbital parameters, suggesting two orbital phases (at ϕ D = 0.13 and 0.37), where the pulsar crosses the Be-disk, as well as phases for the periastron ( ϕ 0 = 0.30) and inferior conjunction ( ϕ IFC = 0.75). The broadband X-ray spectra with Swift-XRT and NuSTAR allowed us to measure a higher neutral hydrogen column density at one of the predicted disk-passing phases.more » « less
-
Abstract We present the discovery of a new optical/X-ray source likely associated with the Fermi γ -ray source 4FGL J1408.6–2917. Its high-amplitude periodic optical variability, large spectroscopic radial-velocity semiamplitude, evidence for optical emission lines and flaring, and X-ray properties together imply the source is probably a new black widow millisecond pulsar binary. We compile the properties of the 41 confirmed and suspected field black widows, finding a median secondary mass of 0.027 ± 0.003 M ⊙ . Considered jointly with the more massive redback millisecond pulsar binaries, we find that the “spider” companion mass distribution remains strongly bimodal, with essentially zero systems having companion masses of between ∼0.07 and 0.1 M ⊙ . X-ray emission from black widows is typically softer and less luminous than in redbacks, consistent with less efficient particle acceleration in the intrabinary shock in black widows, excepting a few systems that appear to have more efficient “redback-like” shocks. Together black widows and redbacks dominate the census of the fastest spinning field millisecond pulsars in binaries with known companion types, making up ≳80% of systems with P spin < 2 ms. Similar to redbacks, the neutron star masses in black widows appear on average significantly larger than the canonical 1.4 M ⊙ , and many of the highest-mass neutron stars claimed to date are black widows with M NS ≳ 2.1 M ⊙ . Both of these observations are consistent with an evolutionary picture where spider millisecond pulsars emerge from short orbital period progenitors that had a lengthy period of mass transfer initiated while the companion was on the main sequence, leading to fast spins and high masses.more » « less