skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spindown of Pulsars Interacting with Companion Winds: The Impact of Magnetospheric Compression
Abstract Pulsars in binary systems with strong companion winds can have the magnetopause separating their magnetosphere from the wind located well within their light cylinder. This bow-like enclosure effectively creates a waveguide that confines the pulsar’s electromagnetic fields and can significantly alter its spindown. In this paper, we study the spindown of compressed pulsar magnetospheres in such systems. We parameterize the confinement as the ratio between the equatorial position of the magnetopause (or standoff distance)Rmand the pulsar’s light cylinderRLC. Using particle-in-cell simulations, we quantify the pulsar spindown for a range of compressions,Rm/RLC= 1/3–1, and inclination angles,χ= 0°…90°, between magnetic and rotation axes. Our strongly confined models (Rm/RLC= 1/3) show two distinct limits. Forχ= 0°, the spindown of a compressed pulsar magnetosphere is enhanced by approximately a factor of three compared to an isolated pulsar due to the increased number of open magnetic field lines. Conversely, forχ= 90°, the compressed pulsar spins down at less than 40% of the rate of an isolated reference pulsar due to the mismatch between the pulsar wind stripe wavelength and the waveguide size. We apply our analysis to the 2.77 s oblique rotator (χ= 60°) in the double-pulsar system PSR J0737-3039. With the numerically derived spindown estimate, we constrain its surface magnetic field toB*≈ (7.3 ± 0.2) × 1011G. We discuss the time modulation of its period derivative, the effects of compression on its braking index, and implications for the radio eclipse in PSR J0737-3039.  more » « less
Award ID(s):
2206607
PAR ID:
10544680
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
973
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 147
Size(s):
Article No. 147
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We point out the dominant importance of plasma injection effects of relativistic winds from pulsars and black holes. We demonstrate that outside the light cylinder, the magnetically dominated outflows sliding along the helical magnetic field move nearly radially with very large Lorentz factors,γ0≫ 1, imprinted into the flow during pair production within the gaps. Only at larger distances,r≥γ0(c/Ω), does MHD acceleration Γ ∝rtake over. As a result, Blandford–Znajek (BZ)-driven outflows produce spine-brightened images. The best-resolved case of the jet in M87 shows both edge-brightened features, as well as weaker spine-brightened features. Only the spine-brightened component can be BZ driven/originate from the black hole's magnetosphere. 
    more » « less
  2. Abstract Solar wind directional discontinuities, such as rotational discontinuities (RDs), significantly influence energy and transport processes in the Earth's magnetosphere. A recent observational study identified a long‐lasting double cusp precipitation event associated with RD in solar wind on 10 April 2015. To understand the magnetosphere‐ionosphere response to the solar wind RD, a global hybrid simulation of the magnetosphere was conducted, with solar wind conditions based on the observation event. The simulation results show significant variations in the magnetopause and cusp regions caused by the passing RD. After the RD propagates to the magnetopause, ion precipitation intensifies, and a double cusp structure at varying latitudes and longitudes forms near noon in the northern hemisphere, which is consistent with the satellite observations by Wing et al. (2023,https://doi.org/10.1029/2023gl103194). Regarding dayside magnetopause reconnection, the simulation reveals that the high‐latitude reconnection process persists during the RD passing, regardless of whether the interplanetary magnetic field (IMF) with a highBy/Bzratio has a positive or negativeBzcomponent, and low‐latitude reconnection occurs after the RD reaches the magnetopause at noon when the IMF turns southward. By examining the ion sources along the magnetic field lines, a connection is found between the single‐ or double‐cusp ion precipitation and the solar wind ions entering from both high‐latitude and low‐latitude reconnection sites. This result suggests that the double‐cusp structure can be triggered by magnetic reconnection occurring at both low latitudes and high latitudes in the opposite hemispheres, associated with a largeBy/Bzratio of the IMF around the RD. 
    more » « less
  3. Abstract The Earth's magnetosheath and cusps emit soft X‐rays due to the charge exchange between highly charged solar wind ions and exospheric hydrogen atoms. The Lunar Environment Heliospheric X‐ray Imager and Solar wind Magnetosphere Ionosphere Link Explorer missions are scheduled to image the Earth's dayside magnetosphere system in soft X‐rays to investigate global‐scale magnetopause reconnection modes under varying solar wind conditions. The exospheric neutral hydrogen density distribution, especially the value of this density at the subsolar magnetopause is of particular interest for understanding X‐ray emissions near this boundary. This paper estimates the exospheric density during solar minimum using the X‐ray Multimirror Mission (XMM) astrophysics observatory. We selected an event on 12 November 2008 from the XMM data archive, which detects soft X‐rays of magnetosheath origin while solar wind and interplanetary magnetic field conditions are relatively constant. During the event the location of the magnetopause was measured in situ by the THEMIS mission, thus the location of the solar wind ions responsible for the magnetosheath emission is well constrained by observation. We estimated the exospheric density using the Open Geospace Global Circulation Model (OpenGGCM) and a spherically symmetric exosphere model. The ratio of the magnetosheath plasma flux between the OpenGGCM model and the THEMIS, was nearly 1, which means the magnetohydrodynamic model reasonably reproduces the magnetosheath plasma conditions. The OpenGGCM magnetosheath parameters were used to deconvolve soft X‐rays of exospheric origin from the XMM signal. The lower‐limit of the exospheric density of this solar minimum event is 36.8 ± 11.7 cm−3at 10 REsubsolar location. 
    more » « less
  4. Abstract We report the discovery of a young, highly scattered pulsar in a search for highly circularly polarized radio sources as part of the Australian Square Kilometre Array Pathfinder Variables and Slow Transients survey. In follow-up observations with the Parkes radio telescope, Murriyang, we identified PSR J1032−5804 and measured a period of 78.7 ms, a dispersion measure of 819 ± 4 pc cm−3, a rotation measure of −2000 ± 1 rad m−2, and a characteristic age of 34.6 kyr. We found a pulse scattering timescale at 3 GHz of ∼22 ms, implying a timescale at 1 GHz of ∼3845 ms, which is the third most scattered pulsar known and explains its nondetection in previous pulsar surveys. We discuss the identification of a possible pulsar wind nebula and supernova remnant in the pulsar’s local environment by analyzing the pulsar spectral energy distribution and the surrounding extended emission from multiwavelength images. Our result highlights the possibility of identifying extremely scattered pulsars from radio continuum images. Ongoing and future large-scale radio continuum surveys will offer us an unprecedented opportunity to find more extreme pulsars (e.g., highly scattered, highly intermittent, and highly accelerated), which will enhance our understanding of the characteristics of pulsars and the interstellar medium. 
    more » « less
  5. Abstract We present timing solutions for 12 pulsars discovered in the Green Bank North Celestial Cap 350 MHz pulsar survey, including six millisecond pulsars (MSPs), a double neutron star (DNS) system, and a pulsar orbiting a massive white dwarf companion. Timing solutions presented here include 350 and 820 MHz Green Bank Telescope data from initial confirmation and follow-up, as well as a dedicated timing campaign spanning 1 ryr PSR J1122−3546 is an isolated MSP, PSRs J1221−0633 and J1317−0157 are MSPs in black widow systems and regularly exhibit eclipses, and PSRs J2022+2534 and J2039−3616 are MSPs that can be timed with high precision and have been included in pulsar timing array experiments seeking to detect low-frequency gravitational waves. PSRs J1221−0633 and J2039−3616 have Fermi Large Area Telescope gamma-ray counterparts and also exhibit significant gamma-ray pulsations. We measure proper motions for three of the MSPs in this sample and estimate their space velocities, which are typical compared to those of other MSPs. We have detected the advance of periastron for PSR J1018−1523 and therefore measure the total mass of the DNS system,mtot= 2.3 ± 0.3M. Long-term pulsar timing with data spanning more than 1 yr is critical for classifying recycled pulsars, carrying out detailed astrometry studies, and shedding light on the wealth of information in these systems post-discovery. 
    more » « less