Biological nitrogen fixation is a fundamental part of ecosystem functioning. Anthropogenic nitrogen deposition and climate change may, however, limit the competitive advantage of nitrogen-fixing plants, leading to reduced relative diversity of nitrogen-fixing plants. Yet, assessments of changes of nitrogen-fixing plant long-term community diversity are rare. Here, we examine temporal trends in the diversity of nitrogen-fixing plants and their relationships with anthropogenic nitrogen deposition while accounting for changes in temperature and aridity. We used forest-floor vegetation resurveys of temperate forests in Europe and the United States spanning multiple decades. Nitrogen-fixer richness declined as nitrogen deposition increased over time but did not respond to changes in climate. Phylogenetic diversity also declined, as distinct lineages of N-fixers were lost between surveys, but the “winners” and “losers” among nitrogen-fixing lineages varied among study sites, suggesting that losses are context dependent. Anthropogenic nitrogen deposition reduces nitrogen-fixing plant diversity in ways that may strongly affect natural nitrogen fixation.
more »
« less
Aridity drives phylogenetic diversity and species richness patterns of nitrogen‐fixing plants in North America
Abstract AimNitrogen (N)‐fixing plants are an important component of global plant communities, but the drivers of N‐fixing plant diversity, especially in temperate regions, remain underexplored. Here, we examined broad‐scale patterns of N‐fixing and non‐fixing plant phylogenetic diversity (PD) and species richness (SR) across a wide portion of temperate North America, focusing on relationships with soil N and aridity. We also tested whether exotic species, with and without N‐fixing symbiosis, have fewer abiotic limitations compared with native species. LocationUSA and Puerto Rico. Time periodCurrent. Major taxa studiedVascular plants, focusing on N‐fixing groups (orders Fabales, Fagales, Rosales and Cucurbitales). MethodsWe subset National Ecological Observatory Network (NEON) plant plot data from all sites along two axes (N fixing–non‐N fixing and native–exotic), calculating plot‐level SR, PD and mean pairwise phylogenetic distance (MPD). We then used linear mixed models to investigate relationships between diversity values and key soil measurements, along with aridity, temperature and fire frequency. ResultsAridity was the sole predictor of proportional phylogenetic diversity of N fixers. The SR of N fixers still decreased marginally in arid regions, whereas native N‐fixer MPD increased with aridity, indicative of unique lineages of N fixers in the driest conditions, in contrast to native non‐N fixers. The SR of both native N fixers and non‐N fixers increased in low‐N soils. Aridity did not affect SR of exotic non‐N fixers, unlike other groups, whereas exotic N fixers showed lower MPD in increasingly high‐N soils, suggesting filtering, contrary what was found for native N fixers. Main conclusionsOur results suggest that it is not nitrogen, or any soil nutrient, that has the strongest effect on the relative success of N fixers in plant communities. Rather, aridity is the key driver, at least for native species, in line with empirical results from other biomes and increased understanding of N fixation as a key mechanism to avoid water loss.
more »
« less
- Award ID(s):
- 1916632
- PAR ID:
- 10368920
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Ecology and Biogeography
- Volume:
- 31
- Issue:
- 8
- ISSN:
- 1466-822X
- Page Range / eLocation ID:
- p. 1630-1642
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Anthropogenic environmental changes are known to affect the Earth's ecosystems. However, how these changes influence assembly trajectories of the impacted communities remains a largely open question.In this study, we investigated the effect of elevated nitrogen (N) deposition and increased precipitation on plant taxonomic and phylogenetic β‐diversity in a 9‐year field experiment in the temperate semi‐arid steppe of Inner Mongolia, China.We found that both N and water addition significantly increased taxonomic β‐diversity, whereas N, not water, addition significantly increased phylogenetic β‐diversity. After the differences in local species diversity were controlled using null models, the standard effect size of taxonomic β‐diversity still increased with both N and water addition, whereas water, not N, addition, significantly reduced the standard effect size of phylogenetic β‐diversity. The increased phylogenetic convergence observed in the water addition treatment was associated with colonizing species in each water addition plot being more closely related to species in other replicate plots of the same treatment. Species colonization in this treatment was found to be trait‐based, with leaf nitrogen concentration being the key functional trait.Synthesis.Our analyses demonstrate that anthropogenic environmental changes may affect the assembly trajectories of plant communities at both taxonomic and phylogenetic scales. Our results also suggest that while stochastic processes may cause communities to diverge in species composition, deterministic process could still drive communities to converge in phylogenetic community structure.more » « less
-
Abstract Nitrogen (N)-fixing symbiosis is critical to terrestrial ecosystems, yet possession of this trait is known for few plant species. Broader presence of the symbiosis is often indirectly determined by phylogenetic relatedness to taxa investigated via manipulative experiments. This data gap may ultimately underestimate phylogenetic, spatial, and temporal variation in N-fixing symbiosis. Still needed are simpler field or collections-based approaches for inferring symbiotic status. N-fixing plants differ from non-N-fixing plants in elemental and isotopic composition, but previous investigations have not tested predictive accuracy using such proxies. Here we develop a regional field study and demonstrate a simple classification model for fixer status using nitrogen and carbon content measurements, and stable isotope ratios (δ15N and δ13C), from field-collected leaves. We used mixed models and classification approaches to demonstrate that N-fixing phenotypes can be used to predict symbiotic status; the best model required all predictors and was 80–94% accurate. Predictions were robust to environmental context variation, but we identified significant variation due to native vs. non-native (exotic) status and phylogenetic affinity. Surprisingly, N content—not δ15N—was the strongest predictor, suggesting that future efforts combine elemental and isotopic information. These results are valuable for understudied taxa and ecosystems, potentially allowing higher-throughput field-based N-fixer assessments.more » « less
-
Abstract AimSoil microorganisms are essential for the functioning of terrestrial ecosystems. Although soil microbial communities and functions are linked to tree species composition and diversity, there has been no comprehensive study of the generality or context dependence of these relationships. Here, we examine tree diversity–soil microbial biomass and respiration relationships across environmental gradients using a global network of tree diversity experiments. LocationBoreal, temperate, subtropical and tropical forests. Time period2013. Major taxa studiedSoil microorganisms. MethodsSoil samples collected from 11 tree diversity experiments were used to measure microbial respiration, biomass and respiratory quotient using the substrate‐induced respiration method. All samples were measured using the same analytical device, method and procedure to reduce measurement bias. We used linear mixed‐effects models and principal components analysis (PCA) to examine the effects of tree diversity (taxonomic and phylogenetic), environmental conditions and interactions on soil microbial properties. ResultsAbiotic drivers, mainly soil water content, but also soil carbon and soil pH, significantly increased soil microbial biomass and respiration. High soil water content reduced the importance of other abiotic drivers. Tree diversity had no effect on the soil microbial properties, but interactions with phylogenetic diversity indicated that the effects of diversity were context dependent and stronger in drier soils. Similar results were found for soil carbon and soil pH. Main conclusionsOur results indicate the importance of abiotic variables, especially soil water content, for maintaining high levels of soil microbial functions and modulating the effects of other environmental drivers. Planting tree species with diverse water‐use strategies and structurally complex canopies and high leaf area might be crucial for maintaining high soil microbial biomass and respiration. Given that greater phylogenetic distance alleviated unfavourable soil water conditions, reforestation efforts that account for traits improving soil water content or select more phylogenetically distant species might assist in increasing soil microbial functions.more » « less
-
Abstract Why only a small proportion of exotic species become invasive is an unresolved question. Escape from the negative effects of soil biota in the native range can be important for the success of many invasives, but comparative effects of soil biota on less successful exotic species are poorly understood. Studies of other mechanisms suggest that such comparisons might be fruitful. Seeds of three closely relatedCentaureaspecies with overlapping distributions in both their native range of Spain and their nonnative range of California were grown to maturity in pots to obtain an F1 generation of full sibling seeds with reduced maternal effects. Full sibling F1 seeds from both ranges were subsequently grown in pots with inoculations of soil from either the native or nonnative ranges in a fully orthogonal factorial design. We then compared plant biomass among species, regions, and soil sources. Our results indicate that escape from soil pathogens may unleash the highly invasiveCentaurea solstitialis, which was suppressed by native Spanish soils but not by soils from California. In contrast, the two non‐invasiveCentaureaspecies grew the same on all soils. These results add unprecedented phylogenetically controlled insight into why some species invade and others do not.more » « less
An official website of the United States government
