We have conducted a paleomagnetic study of Holocene sediments from Lake Victoria in order to develop a high-resolution record of paleomagnetic secular variation (PSV). This study has recovered PSV records from two cores (V95-1P and V95-7P) in northern Lake Victoria (0.5°S). The PSV is recorded in fine-grained detrital magnetite/titanomagnetite grains, but the rock magnetic data suggest that significant magnetic mineral dissolution has occurred, which limits our paleomagnetic studies to the uppermost ~5 m of both cores. Detailed alternating field (af) demagnetization of the natural remanence (NRM) shows that a distinctive characteristic remanence (ChRM) is demagnetized from ~10 to 40 mT, which decreases simply toward the origin. The resulting directional PSV records for 1P and 7P are correlatable with 22 distinct inclination features and 19 declination features. Radiocarbon dating of the cores is based on eight radiocarbon dates from core 1P, which can be correlated into core 7P using both the PSV and rock magnetic/environmental measurements. The final PSV time series cover the last 11,000 years with an average sediment accumulation rate of ~40 cm/kyr. The Lake Victoria PSV records can be correlated with new PSV records from Lake Malawi. Comparison of the correlatable PSV feature ages between the two lakesmore »
Quaternary lavas of the Stardalur Caldera, 20 km northeast of Reykjavik, Iceland, create a 27 300 nT magnetic anomaly visible in both ground and aeromagnetic surveys. Here, we provide a comprehensive mineralogical and rock magnetic data set to analyse NRM intensities and Koenigsberger ratios of 57 drill-core samples from the critical zone (CZ) of the anomaly high at depths between 41 and 131 m. This extends previous studies and verifies that the anomaly is due to an unusually high intensity of remanent magnetization carried by magnetite. The NRM of the CZ samples was acquired during the Olduvai subchron in a field of at most today’s strength. NRM intensities range from 20 to 128 A m–1 with a median of 55 A m–1, and an average of 61 A m–1, respectively, approximately 13–15 times higher than in typical Icelandic basalts (AIB) with an NRM intensity of 4 A m–1. Our new data set shows that the magnetite concentration throughout the CZ basalts is at most twofold higher than in AIB lavas. New data on domain state and TRM efficiency prove that these properties account for an additional factor of at most 2.3. Because magnetite is the most abundant remanence carrier in rocks on Earth, and its remanence acquisition is considered to be extremely well more »
- Publication Date:
- NSF-PAR ID:
- 10368956
- Journal Name:
- Geophysical Journal International
- Volume:
- 231
- Issue:
- 2
- Page Range or eLocation-ID:
- p. 835-855
- ISSN:
- 0956-540X
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We have carried out a paleomagnetic study of three piston cores collected from Lake Turkana. The goal is to recover a Holocene paleomagnetic secular variation (PSV) record for this lake and to correlate it with other Holocene PSV records from the East Africa Rift Valley (EARV). All three cores were sampled with u-channels and magnetic measurements of magnetic susceptibility, the natural remanence (NRM), and two artificial remanences, anhysteretic remanence (ARM) and saturation isothermal remanence (SIRM), were made on them. The remanences were routinely step-wise demagnetized and measured at 10 mT steps up to 60 mT. The NRMS had a simple pattern of demagnetization with a characteristic direction (ChRM) removed between 10 and 60 mT. ARM and SIRM demagnetization indicated that the magnetic grains were relatively soft with median destructive fields (MDF) less than 30 mT. We interpret the magnetic grains to be multi-domain (silt-sized) magnetite/titanomagnetite. The resulting magnetic records of all three cores could be correlated. A chronology for these cores was determined from four radiocarbon dates on core 4P. We also estimated the sediment ages by correlating the PSV to two other well-dated PSV records from the same region, Lakes Malawi and Victoria. PSV age estimation indicates that the radiocarbon dates are aboutmore »
-
SUMMARY International Ocean Drilling Program (IODP) Expedition 341 recovered sediments from the south Alaska continental slope that preserves a well resolved and dated inclination record over most of the past ∼43 000 yr. The Site U1419 chronology is among the highest resolution in the world, constrained by 173 radiocarbon dates, providing the ability to study Palaeomagnetic Secular Variation (PSV) on centennial to millennial timescales. This record has an exceptionally expanded late Pleistocene sedimentary record with sedimentation rates commonly exceeding 100 cm kyr–1, while also preserving a lower resolution Holocene PSV record at the top. Natural and laboratory-induced magnetic remanences of U1419 u-channels from the 112-m-long spliced record were studied using stepwise AF demagnetization. Hysteresis loops were obtained on 95 and IRM acquisition curves on 9 discrete samples to facilitate magnetic domain state, coercivity and magnetic mineralogical determinations. Due to complexities related to lithology, magnetic mineralogy, and depositional and post-depositional processes, Site U1419 sediments are not suitable for palaeointensity studies and declination could not be robustly reconstructed. Progressive (titano-)magnetite dissolution with depth results in decreasing NRM intensity and signal-to-noise that is exacerbated at higher demagnetization steps. As a result, inclination measured after the 20 mT AF demagnetization step provides the most reliable directional record.more »
-
SUMMARY Anisotropy of remanent magnetization and magnetic susceptibility are highly sensitive and important indicators of geological processes which are largely controlled by mineralogical parameters of the ferrimagnetic fraction in rocks. To provide new physical insight into the complex interaction between magnetization structure, shape, and crystallographic relations, we here analyse ‘slice-and-view’ focused-ion-beam (FIB) nano-tomography data with micromagnetic modelling and single crystal hysteresis measurements. The data sets consist of 68 magnetite inclusions in orthopyroxene (Mg60) and 234 magnetite inclusions in plagioclase (An63) were obtained on mineral separates from the Rustenburg Layered Suite of the Bushveld Intrusive Complex, South Africa. Electron backscatter diffraction was used to determine the orientation of the magnetite inclusions relative to the crystallographic directions of their silicate hosts. Hysteresis loops were calculated using the finite-element micromagnetics code MERRILL for each particle in 20 equidistributed field directions and compared with corresponding hysteresis loops measured using a vibrating sample magnetometer (VSM) on silicate mineral separates from the same samples. In plagioclase the ratio of remanent magnetization to saturation magnetization (Mrs/Ms) for both model and measurement agree within 1.0 per cent, whereas the coercivity (Hc) of the average modelled curve is 20 mT lower than the measured value of 60 mT indicating the presence of additionalmore »
-
International Ocean Discovery Program Expedition 397T sought to address the shortage of drilling time caused by COVID-19 mitigation during Expedition 391 (Walvis Ridge Hotspot) by drilling at two sites omitted from the earlier cruise. A week of coring time was added to a transit of JOIDES Resolution from Cape Town to Lisbon, which would cross Walvis Ridge on its way north. These two sites were located on two of the three seamount trails that emerge from the split in Walvis Ridge morphology into several seamount chains at 2°E. Site U1584 (proposed Site GT-6A) sampled the Gough track on the east, and Site U1585 (proposed Site TT-4A) sampled the Tristan track on the west. Together with Site U1578, drilled on the Center track during Expedition 391, they form a transect across the northern Walvis Ridge Guyot Province. The goal was to core seamount basalts and associated volcanic material for geochemical and isotopic, geochronologic, paleomagnetic, and volcanologic study. Scientifically, one emphasis was to better understand the split in geochemical and isotopic signatures that occurs at the morphologic split. Geochronology would add to the established age progression but also give another dimension to understanding Walvis Ridge seamount formation by giving multiple ages atmore »