skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulating the Self-Assembly and Hysteresis Loops of Ferromagnetic Nanoparticles with Sticking of Ligands
The agglomeration of ferromagnetic nanoparticles in a fluid is studied using nanoparticle-level Langevin dynamics simulations. The simulations have interdigitation and bridging between ligand coatings included using a computationally-cheap, phenomenological sticking parameter c. The interactions between ligand coatings are shown in this preliminary study to be important in determining the shapes of agglomerates that form. A critical size for the sticking parameter is estimated analytically and via the simulations and indicates where particle agglomerates transition from well-ordered (c is small) to disordered (c is large) shapes. Results are also presented for the hysteresis loops (magnetization versus applied field) for these particle systems in an oscillating magnetic field appropriate for hyperthermia applications. The results show that the clumping of particles has a significant effect on their macroscopic properties, with important consequences on applications. In particular, the work done by an oscillating field on the system has a nonmonotonic dependence on c.  more » « less
Award ID(s):
1808412
PAR ID:
10369099
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
11
Issue:
11
ISSN:
2079-4991
Page Range / eLocation ID:
2870
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A computational study was performed both of a single agglomerate and of the collision of two agglomerates in a shear flow. The agglomerates were extracted from a direct numerical simulation of a turbulent agglomeration process, and had the loosely packed fractal structure typical of agglomerate structures formed in turbulent agglomeration processes. The computation was performed using a discrete-element method for adhesive particles with four-way coupling, accounting both for forces between the fluid and the particles (and vice versa ) as well as force transmission directly between particles via particle collisions. In addition to understanding and characterizing the particle dynamics, the study focused on illuminating the fluid flow field induced by the agglomerate in the presence of a background shear and the effect of collisions on this particle-induced flow. Perhaps the most interesting result of the current work was the observation that the flow field induced by a particle agglomerate rotating in a shear flow has the form of two tilted vortex rings with opposite-sign circulation. These rings are surrounded by a sea of stretched vorticity from the background shear flow. The agglomerate rotates in the shear flow, but at a slower rate than the ambient fluid elements. In the computations with two colliding agglomerates, we observed cases resulting in agglomerate merger, bouncing and fragmentation. However, the bouncing cases were all observed to also result in an exchange of particles between the two colliding agglomerates, so that they were influenced both by elastic rebound of the agglomerate structures as well as by tearing away of particulate matter between the agglomerates. Overall, the problems of agglomerate–flow interaction and of the collision of two agglomerates in a shear flow are considerably richer in physical phenomena and more complex than can be described by the common approximation that represents each agglomerate by an ‘equivalent sphere’. 
    more » « less
  2. Carosi, G.; Rybka, G. (Ed.)
    An overview of our experimental program to search for axion and axion-like-particle (ALP) dark matter using nuclear magnetic resonance (NMR) techniques is presented. An oscillating axion field can exert a time-varying torque on nuclear spins either directly or via generation of an oscillating nuclear electric dipole moment (EDM). Magnetic resonance techniques can be used to detect such an effect. The first-generation experiments explore many decades of ALP parameter space beyond the current astrophysical and laboratory bounds. It is anticipated that future versions of the experiments will be sensitive to the axions associated with quantum chromodynamics (QCD) having masses <10^(−9) eV/c^2. 
    more » « less
  3. We report computer simulations of two-dimensional convex hard superellipse particle phases vs. particle shape parameters including aspect ratio, corner curvature, and sidewall curvature. Shapes investigated include disks, ellipses, squares, rectangles, and rhombuses, as well as shapes with non-uniform curvature including rounded squares, rounded rectangles, and rounded rhombuses. Using measures of orientational order, order parameters, and a novel stretched bond orientational order parameter, we systematically identify particle shape properties that determine liquid crystal and crystalline phases including their coarse boundaries and symmetry. We observe phases including isotropic, nematic, tetratic, plastic crystals, square crystals, and hexagonal crystals (including stretched variants). Our results catalog known benchmark shapes, but include new shapes that also interpolate between known shapes. Our results indicate design rules for particle shapes that determine two-dimensional liquid, liquid crystalline, and crystalline microstructures that can be realized via particle assembly. 
    more » « less
  4. Abstract Molecular dynamics simulations of particle impact have been conducted for a ceramic with mixed ionic-covalent bonding. For these simulations, individual zinc oxide (ZnO) nanoparticles (NPs) were impacted onto a ZnO substrate to observe the effects of impact velocity (1500–3500 m s−1) and particle diameter (10, 20, and 30 nm) on particle deformation and film formation mechanisms that arise during the micro-cold spray process for producing films. The study shows that a critical impact velocity range exists, generally between 1500 and 3000 m s−1, for sticking of the NP to the substrate. Results suggest that solid-state amorphization-induced viscous flow is the primary deformation mechanism present during impact. Decreasing particle diameter and increasing impact velocity results in an increased degree of amorphization and higher local temperatures within the particle. The impact behavior of mixed ionic-covalent bonded ZnO is compared to the behavior of previously studied ionic and covalent materials. 
    more » « less
  5. Electrospray deposition (ESD) has shown great promise for manufacturing micro- and nanostructured coatings at scale on versatile substrates with complex geometries. ESD exhibits a broad spectrum of morphologies depending upon the properties of spray fluids. Among them are nanowire forests or foams obtained via the in-air gelation of electrospray droplets formed from methylcellulose (MC) solutions. In this study, we explored MC ESD loaded with nanoparticles of various shapes and uncovered the effects of particle fillers on morphology evolution using coarse-grained simulations and physical experiments. Utilizing electrostatic dissipative particle dynamics, we modeled the electrohydrodynamic deformation of particle-laden MC droplets undergoing in-flight evaporation. The simulations quantitatively predict the suppression of droplet deformation as the size or concentration of spherical nanoparticles increases. While small particles can be readily encapsulated into the nanowire body, large particles can arrest nanowire formation. The model was extended to nanoparticles with complex topologies, showing MC nanowires emerging from particle edges and vertices due to curvature-enhanced electric stress. In all cases, strong agreements were found between simulation and experimental results. These results demonstrate the efficacy of the coarse-grained model in predicting the morphology evolution of electrosprayed droplets and lay the groundwork for employing MC nanowires for developing nanostructured composites. 
    more » « less