Changes in seasonality associated with climate warming (e.g. temperature, growing season duration) are likely to alter invertebrate prey biomass and availability in aquatic ecosystems through direct and indirect influences on physiology and phenology, particularly in arctic lakes. However, despite warmer thermal regimes, photoperiod will remain unchanged such that potential shifts resulting from longer and warmer growing seasons could be limited by availability of sunlight, especially at lower trophic levels. Thus, a better understanding of warming effects on invertebrate prey throughout the growing season (e.g. early, peak, late) is important to understand arctic lake food‐web dynamics in a changing climate. Here, we use a multifaceted approach to evaluate prey availability to predators in lakes of arctic Alaska. In a laboratory mesocosm experiment, we measured different metrics of abundance for snails ( We observed variable responses by snails and zooplankton across experiments and treatments. Early in the growing season, snail development was accelerated at multiple life stages (e.g. egg and juvenile). In mid‐season, in accordance with warmer temperatures, we observed significantly increased Overall, our results highlight the importance of interactive effects of temperature and seasonality. Based primarily on temperature, we can readily predict the response of fish metabolism in warmer temperatures. However, in this context, we generally require a better understanding of climate‐driven responses of important invertebrate prey resources. Our results suggest invertebrate prey biomass and availability are likely to respond positively with climate change based on temperature and seasonality, as well as proportionally to the metabolic requirements of fish predators. While further research is necessary to understand how other food‐web components will respond climate change, our findings suggest that the fish community at the top of arctic lake food webs will have adequate prey base in a warming climate.
Agricultural expansion is predicted to increase agrochemical use two to fivefold by 2050 to meet food demand. Experimental evidence suggests that agrochemical pollution could increase snails that transmit schistosomiasis, a disease impacting 250 million people, yet most agrochemicals remain unexamined. Here we experimentally created >100 natural wetland communities to quantify the relative effects of fertilizer, six insecticides (chlorpyrifos, terbufos, malathion, λ‐cyhalothrin, permethrin and esfenvalerate), and six herbicides (acetochlor, alachlor, metolachlor, atrazine, propazine and simazine) on two snail genera responsible for 90% of global schistosomiasis cases. We identified four of six insecticides (terbufos, permethrin, chlorpyrifos and esfenvalerate) as high risk for increasing snail biomass by reducing snail predators. Hence, malathion and λ‐cyhalothrin might be useful for improving food production without increasing schistosomiasis. This top‐down effect of insecticides on predators was so strong that the effects of herbicides on schistosomiasis risk were masked in the presence of predators because there were so few snails. In the absence of snail predators, herbicide effects on snails were generally negative by reducing submerged vegetation Like insecticides, fertilizer had strong positive effects on snail populations. Fertilizer increased both snail more »
- Publication Date:
- NSF-PAR ID:
- 10369111
- Journal Name:
- Journal of Applied Ecology
- Volume:
- 59
- Issue:
- 3
- Page Range or eLocation-ID:
- p. 729-741
- ISSN:
- 0021-8901
- Publisher:
- Wiley-Blackwell
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Lymnaea elodes ) and zooplankton (Daphnia middendorffiana ) across three time periods (early, mid‐ and late growing season) and across three temperature and photoperiod treatments (control, increased temperature and increased temperature × photoperiod). Additionally, we used generalised additive models and generalised additive mixed‐effects models to relate long‐term empirical observations of zooplankton biomass (1983–2015) to observed temperature regimes in an arctic lake. We then simulated zooplankton biomass for the warmest temperature observations across the growing season tomore »Daphnia abundances. However, in the late season,Daphnia appeared to be limited by photoperiod. Confirming our experimental results, our models of zooplankton biomass showed an increase of nearly 20% in warmer years. Further, these model estimates could be conservative as the consumptive demand of fishes may increase in warmer years as well. -
Abstract Disturbances are increasing in size and frequency with climate change, facilitating species that opportunistically exploit areas where habitat‐forming foundation species have been removed. Although it is well‐recognized that consumers, disease and weedy space‐holders can affect foundation species’ resistance to and recovery from disturbance, how predators influence their resilience is less clear.
In salt marshareas de‐vegetated by drought and intensive snail
Littoraria irrorata grazing (hereafter, ‘die‐offs’), we monitored bird use and experimentally manipulated bird and nekton access to the vegetated borders of die‐off mudflats across periods of both vegetation die‐off and regrowth to explore how these predators mediate the resilience of cordgrassSpartina alterniflora , the foundation species that structures US Atlantic coast salt marshes.Surveys revealed that birds, especially probers that agitate soils, forage year‐round for invertebrates in die‐off mudflats in our study area but not in adjacent vegetated areas.
During periods of die‐off, cordgrass borders accessible to bird and nekton predators retreated >3‐times slower and snail densities were halved, relative to predator exclusion cages. In predator‐accessible plots, slower border retreat corresponded to greater snail infection by a bird host‐dependent trematode parasite. During recovery, cordgrass borders revegetated more quickly, and snail densities declined faster over time in unmanipulated controls relative to predator exclusions.
Synthesis . These findings suggestmore » -
Abstract Although parasites are increasingly recognized for their ecosystem roles, it is often assumed that free‐living organisms dominate animal biomass in most ecosystems and therefore provide the primary pathways for energy transfer.
To examine the contributions of parasites to ecosystem energetics in freshwater streams, we quantified the standing biomass of trematodes and free‐living organisms at nine sites in three streams in western Oregon, USA. We then compared the rates of biomass flow from snails
Juga plicifera into trematode parasites relative to aquatic vertebrate predators (sculpin, cutthroat trout and Pacific giant salamanders).The trematode parasite community had the fifth highest dry biomass density among stream organisms (0.40 g/m2) and exceeded the combined biomass of aquatic insects. Only host snails (3.88 g/m2), sculpin (1.11 g/m2), trout (0.73 g/m2) and crayfish (0.43 g/m2) had a greater biomass. The parasite ‘extended phenotype’, consisting of trematode plus castrated host biomass, exceeded the individual biomass of every taxonomic group other than snails. The substantial parasite biomass stemmed from the high snail density and infection prevalence, and the large proportional mass of infected hosts that consisted of trematode tissue (
M = 31% per snail).Estimates of yearly biomass transfer from snails into trematodes were slightly higher than the combined estimate of snail biomass transfer into the three vertebrate predators.more »
These results demonstrate that trematode parasites play underappreciated roles in the ecosystem energetics of some freshwater streams.
-
Abstract Predation on parasites is a common interaction with multiple, concurrent outcomes. Free‐living stages of parasites can comprise a large portion of some predators' diets and may be important resources for population growth. Predation can also reduce the density of infectious agents in an ecosystem, with resultant decreases in infection rates. While predator–parasite interactions likely vary with parasite transmission strategy, few studies have examined how variation in transmission mode influences contact rates with predators and the associated changes in consumption risk.
To understand how transmission mode mediates predator–parasite interactions, we examined associations between an oligochaete predator
Chaetogaster limnaei that lives commensally on freshwater snails and nine trematode taxa that infect snails.Chaetogaster is hypothesized to consume active (i.e. mobile), free‐living stages of trematodes that infect snails (miracidia), but not the passive infectious stages (eggs); it could thus differentially affect transmission and infection prevalence of parasites, including those with medical or veterinary importance. Alternatively, when infection does occur,Chaetogaster can consume and respond numerically to free‐living trematode stages released from infected snails (cercariae). These two processes lead to contrasting predictions about whetherChaetogaster and trematode infection of snails correlate negatively (‘protective predation’) or positively (‘predator augmentation’).Here, we tested how parasite transmission mode affected
Chaetogaster –trematode relationships using data from 20,759 snails collectedmore »Our results suggest that trematode transmission mode mediates the net outcome of predation on parasites. For trematodes with active infectious stages, predatory
Chaetogaster limited the risk of snail infection and its subsequent pathology (i.e. castration). For taxa with passive infectious stages, no such protective effect was observed. Rather, infected snails were associated with higherChaetogaster abundance, likely owing to the resource subsidy provided by cercariae. These findings highlight the ecological and epidemiological importance of predation on free‐living stages while underscoring the influence of parasite life history in shaping such interactions. -
Abstract Pesticide pollution can alter parasite transmission, but scientists are unaware if effects of pesticides on parasite exposure and host susceptibility (i.e. infection risk given exposure) can be generalised within a community context. Using replicated temperate pond communities, we evaluate effects of 12 pesticides, nested in four pesticide classes (chloroacetanilides, triazines, carbamates organophosphates) and two pesticide types (herbicides, insecticides) applied at standardised environmental concentrations on larval amphibian exposure and susceptibility to trematode parasites. Most of the variation in exposure and susceptibility occurred at the level of pesticide class and type, not individual compounds. The organophosphate class of insecticides increased snail abundance (first intermediate host) and thus trematode exposure by increasing mortality of snail predators (top–down mechanism). While a similar pattern in snail abundance and trematode exposure was observed with triazine herbicides, this effect was driven by increases in snail resources (periphytic algae, bottom–up mechanism). Additionally, herbicides indirectly increased host susceptibility and trematode infections by (1) increasing time spent in susceptible early developmental stages and (2) suppressing tadpole immunity. Understanding generalisable effects associated with contaminant class and type on transmission is critical in reducing complexities in predicting disease dynamics in at‐risk host populations.