Abstract Rimed precipitation growth can efficiently remove moisture and aerosols from the boundary layer, yet thin low‐level Arctic mixed‐phase clouds are generally thought to precipitate pristine and aggregated ice crystals. Here we present automated surface photographic measurements showing that only 34% of precipitation particles exhibit negligible riming and that graupel particlesin diameter commonly fall from clouds with liquid water paths less than 50 g m−2. Analyses indicate that significant riming enhancement can occur provided sustained updrafts of 0.4 m s−1, consistent with those measured in Arctic clouds. A Lagrangian numerical simulation that tracks falling particles suggests that similar updraft speeds can account for about one half of the observed riming enhancement. Riming enhancement appears particularly likely when weak temperature inversions are observed at cloud top, but a full explanation remains to be determined.
more »
« less
Measurement and Analysis of the Microphysical Properties of Arctic Precipitation Showing Frequent Occurrence of Riming
Abstract Detailed ground‐based observations of snow are scarce in remote regions, such as the Arctic. Here, Multi‐Angle Snowflake Camera measurements of over 55,000 solid hydrometeors—obtained during a two‐year period from August 2016 to August 2018 at Oliktok Point, Alaska—are analyzed and compared to similar measurements from an earlier experiment at Alta, Utah. In general, distributions of hydrometeor fall speed, fall orientation, aspect ratio, flatness, and complexity (i.e., riming degree) were observed to be very similar between the two locations, except that Arctic hydrometeors tended to be smaller. In total, the slope parameter defining a negative exponential of the size distribution was approximately 50% steeper in the Arctic as at Alta. Sixty‐six percent of particles were observed to be rimed or moderately rimed with some suggestion that riming is favored by weak boundary layer stability. On average, the fall speed of rimed particles was not notably different from aggregates. However, graupel density and fall speed increase as cloud temperatures approach the melting point.
more »
« less
- Award ID(s):
- 1841870
- PAR ID:
- 10369270
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 127
- Issue:
- 7
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract. Ground-based measurements of frozen precipitation are heavily influenced by interactions of surface winds with gauge-shield geometry. The Multi-Angle Snowflake Camera (MASC), which photographs hydrometeors in free-fall from three different angles while simultaneously measuring their fall speed, has been used in the field at multiple midlatitude and polar locations both with and without wind shielding. Here, we present an analysis of Arctic field observations – with and without a Belfort double Alter shield – and compare the results to computational fluid dynamics (CFD) simulations of the airflow and corresponding particle trajectories around the unshielded MASC. MASC-measured fall speeds compare well with Ka-band Atmospheric Radiation Measurement (ARM) Zenith Radar (KAZR) mean Doppler velocities only when winds are light (≤5ms-1) and the MASC is shielded. MASC-measured fall speeds that do not match KAZR-measured velocities tend to fall below a threshold value that increases approximately linearly with wind speed but is generally <0.5ms-1. For those events with wind speeds ≤1.5ms-1, hydrometeors fall with an orientation angle mode of 12∘ from the horizontal plane, and large, low-density aggregates are as much as 5 times more likely to be observed. Simulations in the absence of a wind shield show a separation of flow at the upstream side of the instrument, with an upward velocity component just above the aperture, which decreases the mean particle fall speed by 55 % (74 %) for a wind speed of 5 m s−1 (10 m s−1). We conclude that accurate MASC observations of the microphysical, orientation, and fall speed characteristics of snow particles require shielding by a double wind fence and restriction of analysis to events where winds are light (≤5ms-1). Hydrometeors do not generally fall in still air, so adjustments to these properties' distributions within natural turbulence remain to be determined.more » « less
-
Abstract. Values of undercatch-corrected liquid-equivalent snowfall rate (S) at a ground site and microwave reflectivity (Z) retrieved using an airborne W-band radar were acquired during overflights. The temperature at the ground site was between −6 and −15 ∘C. At flight level, within clouds containing ice and supercooled liquid water, the temperature was approximately 7 ∘C colder. Additionally, airborne measurements of snow particle imagery were acquired. The images demonstrate that most of the snow particles were rimed, at least at flight level. A relatively small set of S–Z pairs (four) is available from the overflights. Important distinctions between these measurements and those of Pokharel and Vali (2011), who reported S–Z pairs and an S–Z relationship for rimed snow particles, are (1) the fewer S–Z pairs, (2) the method used to acquire S, and (3) the altitude, relative to ground, of the W-band Z retrievals. This analysis corroborates the fact that the S–Z relationship reported in Pokharel and Vali (2011) yields an S – in scenarios with snowfall produced by riming – substantially larger than that derived using an S–Z relationship developed for unrimed snow particles.more » « less
-
null (Ed.)Abstract A polarimetric radar–based method for retrieving atmospheric ice particle shapes is applied to snowfall measurements by a scanning K a -band radar deployed at Oliktok Point, Alaska (70.495°N, 149.883°W). The mean aspect ratio, which is defined by the hydrometeor minor-to-major dimension ratio for a spheroidal particle model, is retrieved as a particle shape parameter. The radar variables used for aspect ratio profile retrievals include reflectivity, differential reflectivity, and the copolar correlation coefficient. The retrievals indicate that hydrometeors with mean aspect ratios below 0.2–0.3 are usually present in regions with air temperatures warmer than approximately from −17° to −15°C, corresponding to a regime that has been shown to be favorable for growth of pristine ice crystals of planar habits. Radar reflectivities corresponding to the lowest mean aspect ratios are generally between −10 and 10 dB Z . For colder temperatures, mean aspect ratios are typically in a range between 0.3 and 0.8. There is a tendency for hydrometeor aspect ratios to increase as particles transition from altitudes in the temperature range from −17° to −15°C toward the ground. This increase is believed to result from aggregation and riming processes that cause particles to become more spherical and is associated with areas demonstrating differential reflectivity decreases with increasing reflectivity. Aspect ratio retrievals at the lowest altitudes are consistent with in situ measurements obtained using a surface-based multiangle snowflake camera. Pronounced gradients in particle aspect ratio profiles are observed at altitudes at which there is a change in the dominant hydrometeor species, as inferred by spectral measurements from a vertically pointing Doppler radar.more » « less
-
Abstract Shear and buoyancy gradients, often observed in midlatitude baroclinic and orographic winter storms, produce discrete layers of turbulence. These turbulent layers modify the distribution of supercooled liquid water (SLW), whose presence enables hydrometeors to grow to precipitation sizes faster than through vapor-ice deposition alone. Both the Wegener–Bergeron–Findeisen process and riming require SLW—heterogeneously distributed in response to the dynamic forcings at all superposed scales. The University of Wyoming W-band cloud radar Doppler spectrum width characterizes the air motion turbulence intensity in mixed-phase layer clouds after avoiding fall speed dominated regions through comparison to coarser radar turbulence metrics. Embedded layers of turbulent air motion are compared to quiescent cloud regions in either/both the upwind and downwind directions. Median radar reflectivity profiles characterize the vertical growth of hydrometeors in the vicinity of identified layers, and differences in these vertical reflectivity gradients comparing turbulent to nonturbulent regions quantify enhanced hydrometeor growth over the layer. Over the entirety of the Seeded and Natural Orographic Wintertime Clouds—the Idaho Experiment, this parameter demonstrates a statistically significant increase, −13.6 dBZekm−1(from −1.7 to −24.5, 95% computed confidence), in radar reflectivity echo power with distance downward for embedded turbulent layers compared to quiescent cloud nearby. The increased vertical particle growth rate for turbulent layers appears to result from spatially heterogeneous phase partitioning, increased SLW mass and extent, and enhanced collision/collection rates in these layers. These first two conditions are examined individually where turbulent layers or fall streaks are sampled in situ, while the latter agrees with modeling results but can only be inferred herein. Significance StatementTurbulent mixing in mixed-phase clouds is understood to enhance cloud hydrometeor growth. This study quantifies these effects on observed airborne W-band radar reflectivity over an entire field campaign targeting midlatitude winter storms and calls into question whether this linkage is diagnosed properly if at all in forecast and bulk microphysical models with coarse (greater than 500 m) grid spacing or vertical resolution.more » « less
An official website of the United States government
